Section 19.2

Overview

677

user fork user
process exec process
Fommm e e
I
I
: stream head stream head
I
I
L N i 1
: \ ttcompat
| ISTREAMS module!
| []
I
I
| ldterm
: STREAMS module
I
I
N B R 1
:) pckt i ptem
| :_STREAMS module! STREAMS module
_______ 8]
|
|
i
i pseudo-terminal pseudo-terminal
! master slave
i
‘ L
]
i

stdin, stdout, stderr

kernel

Figure 19.2 Arrangement of pseudo terminals under Solaris

Note that the three STREAMS modules above the slave are the same as the output
from the program shown in Figure 14.18 for a network login. In Section 19.3.1, we show
how to build this arrangement of STREAMS modules.

From this point on, we’ll simplify the figures by not showing the “read and write
functions” from Figure 19.1 or the “stream head” from Figure 19.2. We’ll also use the
abbreviation PTY for pseudo terminal and lump all the STREAMS modules above the

slave PTY in Figure 19.2 into a box called “terminal line discipline,” as in Figure 19.1.

We'll now examine some of the typical uses of pseudo terminals.

Network Login Servers

Pseudo terminals are built into servers that provide network logins. The typical
examples are the telnetd and rlogind servers. Chapter 15 of Stevens [1990] details
the steps involved in the rlogin service. Once the login shell is running on the remote
host, we have the arrangement shown in Figure 19.3. A similar arrangement is used by

the telnetd server.

678

Pseudo Terminals Chapter 19

rlogind .__ fork | login
server exec, exet] shell
\ stdont erin
\ stderr i
e \ ------------ f=d-=2
: / . S NN A
\ H ina o
I TCP/IP \ \ { terminal b
: \ \\ : line discipline Lo
| \ \ A i
} \ i
I \ \ / tkernel
i '
‘ m.etworlf PTY master ' PTY slave '
i device driver i ; :
i [
I
f
'

!
|
|
'
|

Figure 19.3 Arrangement of processes for rlogind server

We show two calls to exec between the rlogind server and the login shell,
because the Login program is usually between the two to validate the user.

A key point in this figure is that the process driving the PTY master is normally
reading and writing another [/O stream at the same time. In this example, the other
1/0 stream is the TCP/IP box. This implies that the process must be using some form
of I/O multiplexing (Section 14.5), such as select or poll, or must be divided into
two processes or threads.

script Program

The script(1) program that is supplied with most UNIX systems makes a copy in a file
of everything that is input and output during a terminal session. The program does this
by placing itself between the terminal and a new invocation of our login shell.
Figure 19.4 details the interactions involved in the script program. Here, we
specifically show that the script program is normally run from a login shell, which
then waits for script to terminate.

While script is running, everything output by the terminal line dlsc1plme above
the PTY slave is copied to the script file (usually called typescript). Since our
keystrokes are normally echoed by that line discipline module, the script file also
contains our input. The script file won’t contain any passwords that we enter, however,
since passwords aren’t echoed.

While writing the first edition of this book, Rich Stevens used the script program to capture
the output of the example programs. This avoided typographical errors that could have
occurred if he had copied the program output by hand. The drawback to using script,
however, is having to deal with control characters that are present in the script file.

Section 19.2 Overview 679

e

\

|
!
I
I
i
I
I
I 1kernel
|
I
I
]
I
I
i

script*
| file
login fork : . fork
shell oxec script process oxec shell
(sleeping) stdout stdin
stderr

oo il At e e St
|
terminal terminal :
line discipline line discipline :
|
i

terminal

. . PTY master PTY slave
device driver

user at a
terminal
Figure 19.4 The script program

After developing the general pty program in Section 19.5, we'll see that a trivial
shell script turns it into a version of the script program.

expect Program

Pseudo terminals can be used to drive interactive programs in noninteractive modes.
Numerous programs are hardwired to require a terminal to run. One example is the
passwd(l) command, which requires that the user enter a password in response to a
prompt.

Rather than modify all the interactive programs to support a batch mode of
operation, a better solution is to provide a way to drive any interactive program from a
script. The expect program [Libes 1990, 1991, 1994] provides a way to do this. It uses
pseudo terminals to run other programs, similar to the pty program in Section 19.5.
But expect also provides a programming language to examine the output of the
program being run to make decisions about what to send the program as input. When
an interactive program is being run from a script, we can’t just copy everything from the
script to the program and vice versa. Instead, we have to send the program some input,
look at its output, and decide what to send it next.

680 Pseudo Terminals Chapter 19

Running Coprocesses

In the coprocess example in Figure 15.19, we couldn’t invoke a coprocess that used the
standard 1/0 library for its input and output, because when we talked to the coprocess
across a pipe, the standard 1/0 library fully buffered the standard input and standard
output, leading to a deadlock. If the coprocess is a compiled program for which we
don’t have the source code, we can’t add fflush statements to solve this problem.
Figure 15.16 showed a process driving a coprocess. What we need to do is place a
pseudo terminal between the two processes, as shown in Figure 19.5, to trick the
coprocess into thinking that it is being driven from a terminal instead of from another
process.

coprocess

pipel stdin
driving pseudo
program terminal
pipe2

stdout

Figure 19.5 Driving a coprocess using a pseudo terminal

Now the standard input and standard output of the coprocess look like a terminal
device, so the standard I/O library will set these two streams to be line buffered.

The parent can obtain a pseudo terminal between itself and the coprocess in two
ways. (The parent in this case could be either the program in Figure 15.18, which used
two pipes to communicate with the coprocess, or the program in Figure 17.4, which
used a single STREAMS pipe.) One way is for the parent to call the pty fork function
directly (Section 19.4) instead of calling fork. Another is to exec the pty program
(Section 19.5) with the coprocess as its argument. We'll look at these two solutions after
showing the pty program.

Watching the Output of Long-Running Programs

If we have a program that runs for a long time, we can easily run it in the background
using any of the standard shells. But if we redirect its standard output to a file, and if it
doesn’t generate much output, we can’t easily monitor its progress, because the
standard I/O library will fully buffer its standard output. All that we’ll see are blocks
of output written by the standard 1/0 library to the output file, possibly in chunks as
large as 8,192 bytes.

If we have the source code, we can insert calls to ff1ush. Alternatively, we can run
the program under the pty program, making its standard /O library think that its
standard output is a terminal. Figure 19.6 shows this arrangement, where we have
called the slow output program slowout. The fork/exec arrow from the login shell
to the pty process is shown as a dashed arrow to reiterate that the pty process is
running as a background job.

Section 19.3 Opening Pseudo-Terminal Devices 681

output
file
logi f
gin | _o_r}E> pty fork slowout
shell exec process exec
A stdout stdin
stderr
[faiiidll el ml r—T - e Bt
I 1 !
] i
I terminal terminal |
: line discipline line discipline {
i i
I 1
I \ 1 kernel
| - |
t 1
' ermina PTY master PTY slave !
I device driver I
I I
t !
] 1
I I

user at a
terminal

Figure 19.6 Running a slow output program using a pseudo terminal

19.3 Opening Pseudo-Terminal Devices

The way we open a pseudo-terminal device differs among platforms. The Single UNIX
Specification includes several functions as XSI extensions in an attempt to unify the
methods. These extensions are based on the functions originally provided to manage
STREAMS-based pseudo terminals in System V Release 4.

The posix_openpt function is provided as a portable way to open an available
pseudo-terminal master device.

#include <stdlib.h>
#include <fcntl.h>

int posix_openpt (int oflag) ;

Returns: file descriptor of next available PTY master if OK, -1 on error

The oflag argument is a bitmask that specifies how the master device is to be opened,
similar to the same argument used with open(2). Not all open flags are supported,
however. With posix_openpt, we can specify O_RDWR to open the master device for
reading and writing, and we can specify O_NOCTTY to prevent the master device from
becoming a controlling terminal for the caller. All other open flags result in unspecified
behavior.

682 Pseudo Terminals Chapter 19

Before a slave pseudo-terminal device can be used, its permissions need to be set so
that it is accessible to applications. The grantpt function does just this. It sets the user
ID of the slave’s device node to be the caller’s real user ID and sets the node’s group 1D
to an unspecified value, usually some group that has access to terminal devices. The
permissions are set to allow read and write access to individual owners and write access
to group owners (0620).

#include <stdlib.h>
int grantpt (int filedes) ;
int unlockpt (int filedes) ;

Both return: 0 on success, —1 on error

To change permission on the slave device node, grantpt might need to fork and
exec a set-user-ID program (/usr/1lib/pt_chmod on Solaris, for example). Thus, the
behavior is unspecified if the caller is catching SIGCHLD.

The unlockpt function is used to grant access to the slave pseudo-terminal device,
thereby allowing applications to open the device. By preventing others from opening
the slave device, applications setting up the devices have an opportunity to initialize the
slave and master devices properly before they can be used.

Note that in both grantpt and unlockpt, the file descriptor argument is the file
descriptor associated with the master pseudo-terminal device.

The ptsname function is used to find the pathname of the slave pseudo-terminal
device, given the file descriptor of the master. This allows applications to identify the
slave independent of any particular conventions that might be followed by a given
platform. Note that the name returned might be stored in static memory, so it can be
overwritten on successive calls.

#include <stdlib.h>

char *ptsname (int filedes) ;

Returns: pointer to name of PTY slave if OK, NULL on error

Figure 19.7 summarizes the pseudo-terminal functions in the Single UNIX
Specification and indicates which functions are supported by the platforms discussed in

this text.
On FreeBSD, unlockpt does nothing; the O_NOCTTY flag is defined only for compatibility
with applications that call posix_openpt. FreeBSD does not allocate a controlling terminal
as a side effect of opening a terminal device, so the 0_NOCTTY flag has no effect.
: - FreeBSD Linux Mac OS X Solaris
Function Description XSI 521 2422 103 9
grantpt Change permissions of slave PTY device. | ¢ . . .
posix_openpt | Opena master PTY device. . .
ptsname Return name of slave PTY device. . . o .
unlockpt Allow slave PTY device to be opened. . . o .

Figure 19.7 XSl pseudo-terminal functions

Section 19.3 Opening Pseudo-Terminal Devices 683

Even though the Single UNIX Specification has tried to improve portability in this
area, implementations are still catching up, as illustrated by Figure 19.7. Thus, we
provide two functions that handle all the details: ptym_open to open the next available
PTY master device and ptys_open to open the corresponding slave device.

#include "apue.h"
int ptym open(char *pts_name, int pts_namesz) ;
Returns: file descriptor of PTY master if OK, -1 on error

int ptys_open (char *pts_name) ;

Returns: file descriptor of PTY slave if OK, -1 on error

Normally, we don’t call these two functions directly; the function pty_fork
(Section 19.4) calls them and also forks a child process.

The ptym_open function determines the next available PTY master and opens the
device. The caller must allocate an array to hold the name of either the master or the
slave; if the call succeeds, the name of the corresponding slave is returned through
pts_name. This name is then passed to ptys_open, which opens the slave device. The
length of the buffer in bytes is passed in pts_namesz so that the ptym open function
doesn’t copy a string that is longer than the buffer.

The reason for providing two functions to open the two devices will become
obvious when we show the pty fork function. Normally, a process calls ptym_open
to open the master and obtain the name of the slave. The process then forks, and the
child calls ptys_open to open the slave after calling setsid to establish a new session.
This is how the slave becomes the controlling terminal for the child.

19.3.1 STREAMS-Based Pseudo Terminals

The details of the STREAMS implementation of pseudo terminals under Solaris are
covered in Appendix C of Sun Microsystems [2002]. The next available PTY master
device is accessed through a STREAMS clone device. A clone device is a special device
that returns an unused device when it is opened. (STREAMS clone opens are discussed
in detail in Rago [1993].)

The STREAMS-based PTY master clone device is /dev/ptmx. When we open it,
the clone open routine automatically determines the first unused PTY master device
and opens that unused device. (We'll see in the next section that, under BSD-based
systems, we have to find the first unused PTY master ourselves.)

#include "apue.h"
#include <errno.h>
#include <fcntl.h>
#include <stropts.h>

int
ptym_open(char *pts_nanme, int pts_namesz)

{

char *ptr;

684 Pseudo Terminals Chapter 19

int fdm;

/*
* Return the name of the master device so that on failure
* the caller can print an error message. Null terminate
* to handle case where strlen("/dev/ptmx") > pts namesz.

*/
strncpy (pts_name, "/dev/ptmx", pts_namesz) ;
pts_name [pts_namesz - 1] = ’\0’;

if ((fdm = open(pts_name, O _RDWR)) < 0)
return(-1); .
if (grantpt (£dm) < 0) { /* grant access to slave */

close (fdm) ;
return(-2);

}

if (unlockpt (fdm) < 0) { /* clear slave’s lock flag */
close (fdm) ;
return(-3);

}

if ((ptr = ptsname(fdm)) == NULL) { /* get slave’s name */
close (fdm) ;
return(-4);

}

/*

* Return name of slave. Null terminate to handle
* case where strlen(ptr) > pts_namesz.

*/
strncpy (pts_name, ptr, pts_namesz) ;
pts_name [pts_namesz - 1] = ‘\0’;
return (fdm) ; /* return fd of master */

}
int
ptys_open(char *pts_name)

int fds, setup;
/*
* The following open should allocate a controlling terminal.
*/
if ((fds = open(pts_name, O _RDWR)) < 0)
return(-5);
/*
* Check if stream is already set up by autopush facility.
*/
if ((setup = ioctl(fds, I_FIND, "ldterm")) < 0) {
close (fds) ;

return(-6) ;

}

if (setup == 0) {

Section 19.3 Opening Pseudo-Terminal Devices 685

if (ioctl(fds, I_PUSH, "ptem") < 0) {
close (fds) ;
return(-7);

}

if (ioctl(fds, I PUSH, "ldterm") < 0) {
close (fds) ;
return(-8) ;

!

if (ioctl(fds, I_PUSH, "ttcompat") < 0) {
close (fds) ;
return{(-9);

}

}

return (fds) ;

Figure 19.8 STREAMS-based pseudo-terminal open functions

We first open the clone device /dev/ptmx to get a file descriptor for the PTY master.
Opening this master device automatically locks out the corresponding slave device.

We then call grantpt to change permissions of the slave device. On Solaris, it
changes the ownership of the slave to the real user ID, changes the group ownership to
the group tty, and changes the permissions to allow only user-read, user-write, and
group-write. The reason for setting the group ownership to tty and enabling
group-write permission is that the programs wal1(1) and write(l) are set-group-ID to
the group tty. Calling grantpt executes the program /usr/1lib/pt_chmod, which
is set-user-ID to root so that it can modify the ownership and permissions of the slave.

The function unlockpt is called to clear an internal lock on the slave device. We
have to do this before we can open the slave. Additionally, we must call ptsname to
obtain the name of the slave device. This name is of the form /dev/pts/NNN.

The next function in the file is ptys_open, which does the actual open of the slave
device. Solaris follows the historical System V behavior: if the caller is a session leader
that does not already have a controlling terminal, this call to open allocates the PTY
slave as the controlling terminal. If we didn’t want this to happen, we could specify the
O_NOCTTY flag for open.

After opening the slave device, we might need to push three STREAMS modules
onto the slave’s stream. Together, the pseudo terminal emulation module (ptem) and
the terminal line discipline module (1dterm) act like a real terminal. The ttcompat
module provides compatibility for older V7, 4BSD, and Xenix ioctl calls. It's an
optional module, but since it's automatically pushed for console logins and network
logins (see the output from the program shown in Figure 14.18), we push it onto the
slave’s stream.

The reason that we might not need to push these three modules is that they might
be there already. The STREAMS system supports a facility known as autopush, which
allows an administrator to configure a list of modules to be pushed onto a stream
whenever a particular device is opened (see Rago [1993] for more details). We use the
I_FIND ioctl command te see whether 1dterm is already on the stream. If so, we

686 Pseudo Terminals Chapter 19

assume that the stream has been configured by the autopush mechanism and avoid
pushing the modules a second time.

The result of calling ptym_open and ptys_open is two file descriptors open in the
calling process: one for the master and one for the slave.

19.3.2 BSD-Based Pseudo Terminals

Under BSD-based systems and Linux-based systems, we provide our own versions of
the XSI functions, which we can optionally include in our library, depending on which
functions (if any) are provided by the underlying platform.

In our version of posix_openpt, we have to determine the first available PTY
master device. To do this, we start at /dev/ptyp0 and keep trying until we
successfully open a PTY master or until we run out of devices. We can get two different
errors from open: EIO means that the device is already in use; ENOENT means that the
device doesn’t exist. In the latter case, we can terminate the search, as all pseudo
terminals are in use. Once we are able to open a PTY master, say /dev/ptyMN, the
name of the corresponding slave is /dev/ttyMN. On Linux, if the. name of the PTY
master is /dev/pty/mXX, then the name of the corresponding PTY slave is
/dev/pty/sXX.

#include "apue.h"
#include <errno.h>
#include <fcntl.h>
#include <grp.h>

#ifndef _HAS OPENPT
int
posix_openpt (int oflag)

{

int fdm;
char *ptrl, *ptr2;
char ptm _name [16] ;
strcpy (ptm_name, "/dev/ptyXY");
/* array index: 0123456789 (for references in following code) */
for (ptrl = "pgrstuvwxyzPQRST"; *ptrl != 0; ptrl++)
ptm_name [8] = *ptrl;
for (ptr2 = "012345678%abcdef"; *ptr2 != 0; ptr2++)
ptm_name [9] = *ptr2;
/*
* Try to open the master.
*/
if ((fdm = open(ptm_name, oflag)) < 0) {
if (errno == ENOENT) /* different from EIO */
return(-1); /* out of pty devices */
else
continue; /* try next pty device */
}

return (fdm) ; /* got it, return fd of master */

Section 19.3 Opening Pseudo-Terminal Devices 687

}
errno = EAGAIN; -
return(-1); /* out of pty devices */
}
#endif
#ifndef HAS_PTSNAME
char *
ptsname (int fdm)
{

static char pts_name[16]};
char *ptm_name;

ptm_name = ttyname (fdm);
if (ptm_name == NULL)
return (NULL) ;
strncpy (pts_name, ptm_name, sizeof (pts_name));

pts_name [sizeof (pts_name) - 1] = ‘\0’;
if (strncmp(pts_name, "/dev/pty/", 9) == 0)
pts_name{9] = ‘s’; ' /* change /dev/pty/mXX to /dev/pty/sXX */
else ..
pts_name{5] = ‘t’; /* change "pty" to "tty" */
return(pts_name) ;
}
#endif
#ifndef _HAS_GRANTPT
int
grantpt (int fdm)
{
struct group *grptr;
int gid;
char *pts_name;

pts_name = ptsname (fdm);

if ((grptr = getgrnam("tty")) != NULL)
gid = grptr->gr_gid;
else
gid = -1; /* group tty is not in the group file */
/*
* The following two calls won’t work unless we’re the superuser.
*/
if (chown(pts name, getuid(), gid) < 0)

return(-1); _
return (chmod (pts_name, S_IRUSR | S_IWUSR | S_IWGRP));

}
#endif

#ifndef _HAS UNLOCKPT
int
unlockpt (int f£dm)

688

Pseudo Terminals

Chapter 19

{
}

return(0); /* nothing to do */

#endif

int

ptym open(char *pts name, int pts_namesz)

{

}

int

char *ptr;
int fdm;
/*

* Return the name of the master device so that on failure
* the caller can print an error message. Null terminate
* to handle case where string length > pts_namesz.
*/
strncpy (pts_name, "/dev/ptyXX", pts namesz);
pts_name [pts namesz - 1] = '\0’;
if ((fdm = posix openpt (O _RDWR)) < 0)
return(-1);
if (grantpt(fdm) < 0) { /* grant access to slave */
close (fdm) ;
returni{(-2);

if (unlockpt (fdm) < 0) ¢ /* clear slave’s lock flag */
close (fdm) ;
return(-3) ;

if ((ptr = ptsname(fdm)) == NULL) { /* get slave’s name */
close (fdm) ;
return(-4) ;

}

/*

* Return name of slave. Null terminate to handle
* case where strlen(ptr) > pts_namesz.

*/
strncpy (pts_name, ptr, pts namesz) ;
pts_name [pts_namesz - 1] = ’'\0’;
return (fdm) ; /* return fd of master */

ptys_open(char *pts_name)

{

int fds;

if ((fds = open(pts_name, O _RDWR)) < 0)
return(-5) :
returnfds) ;

Figure 19.9 Pseudo-terminal open functions for BSD and Linux

Section 19.3 Opening Pseudo-Terminal Devices 689

In our version of grantpt, we call chown and chmod but realize that these two
functions won’t work unless the calling process has superuser permissions. If it is
important that the ownership and protection be changed, these two function calls need
to be placed into a set-user-ID root executable, similar to the way Solaris implements it.

The function ptys_open in Figure 19.9 simply opens the slave device. No other
initialization is necessary. The open of the slave PTY under BSD-based systems does
not have the side effect of allocating the device as the controlling terminal. In
Section 19.4, we'll see how to allocate the controlling terminal under BSD-based
systems.

Our version of posix openpt tries 16 different groups of 16 PTY master devices:
/dev/ptyp0 through /dev/ptyTE. The actual number of PTY devices available depends on
two factors: (a) the number configured into the kernel, and (b) the number of special device
files that have been created in the /dev directory. The number available to any program is the
lesser of (a) or (b).

19.3.3 Linux-Based Pseudo Terminals

Linux supports the BSD method for accessing pseudo terminals, so the same functions
shown in Figure 19.9 will also work on Linux. However, Linux also supports. a
clone-style interface to pseudo terminals using /dev/ptmx (but this is not a STREAMS
device). The clone interface requires extra steps to identify and unlock a slave device.
The functions we can use to access these pseudo terminals on Linux are shown in
Figure 19.10.

#include "apue.h"
#include <fcntl.h>

#ifndef _HAS_OPENPT

int

posix_openpt (int oflag)
{

int fdm;

fdm = open("/dev/ptmx", oflag);
return (fdm) ;

}

#endif

#ifndef HAS PTSNAME

char *

ptsname (int fdm)

{
int sminor;
static char pts_name[16];

if (ioctl(fdm, TIOCGPTN, &sminor) < 0)

return (NULL) ;
snprintf (pts_name, sizeof (pts_name), "/dev/pts/%d", sminor);
return (pts_name) ;

690

Pseudo Terminals

Chapter 19

}
#endif
#ifndef _HAS GRANTPT
int
grantpt (int f£dm)
{
char *pts_name;
pts_name = ptsname (fdm); . -
return(chmod (pts_name, S_IRUSR | S_.IWUSR -| 'S_IWGRP));
} g Sl
#endif

#ifndef _HAS_UNLOCKPT
int
unlockpt (int £dm)

{

int lock = 0;

return(ioctl (fdm, TIOCSPTLCK, &lock));

}

#endif

int
ptym_open(char *pts_name, int pts_namesz)

char *ptr;
int fdm;
/*

* Return the name of the master device so that on failure
* the caller can print an error message. Null terminate
* to handle case where string length > pts_namesz.
*/

strncpy (pts_name, "/dev/ptmx", pts_namesz) ;

pts_name [pts_namesz - 1] = ‘\0’;

fdm = posix_openpt (O_RDWR) ;

if (fdm < 0)
return(-1);

if (grantpt(fdm) < 0) { /* grant access to slave */
close (fdm) ;
return(-2);

}

if (unlockpt (fdm) < 0) { /* clear slave’s lock flag */
close (fdm) ;
return(-3);

if ((ptr = ptsname(fdm)) == NULL) { /* get slave’s name */
close (fdm) ;
return(-4);

Section 19.4 pty_ fork Function 691

19.4

/*
* Return name of slave. Null terminate to handle case
* where strlen(ptr) > pts_namesz.

*/
strncpy (pts_name, ptr, pts_namesz) ;
pts_name [pts_namesz - 1] = "\O’;
return (fdm) ; /* return fd of master */
}
int

ptys_open (char *pts name)

{

int fds;

if ((fds = open(pts_name, O_RDWR)) < 0)
return(-5);
return (fds) ;

Figure 19.10 Pseudo-terminal open functions for Linux

On Linux, the PTY slave device is already owned by group tty, so all we need to
do in grantpt is ensure that the permissions are correct.

pty fork Function

We now use the two functions from the previous section, ptym_open and ptys_open,
to write a new function that we call pty_fork. This new function combines the
opening of the master and the slave with a call to fork, establishing the child as a
session leader with a controlling terminal.

[#include "apue.h"
#include <termios.h>
#include <sys/ioctl.h> /* find struct winsize on BSD systems */

pid t pty fork(int *ptrfdm, char *slqve_name, int slave_namesz,
const struct termios *slave_termios,
const struct winsize *slave_winsize) ;

L Returns: 0 in child, process ID of child in parent, —1 on error

The file descriptor of the PTY master is returned through the ptrfdm pointer.

If slave_name is non-null, the name of the slave device is stored at that location. The
caller has to allocate the storage pointed to by this argument.

If the pointer slave_termios is non-null, the system uses the referenced structure to
initialize the terminal line discipline of the slave. If this pointer is null, the system sets
the slave’s termios structure to an implementation-defined initial state. Similarly, if
the slave_winsize pointer is non-null, the referenced structure initializes the slave’s
window size. If this pointer is null, the winsize structure is normally initialized to 0.

692 Pseudo Terminals Chapter 19

Figure 19.11 shows the code for this function. It works on all four platforms
described in this text, calling the appropriate ptym_open and ptys_open functions.

After opening the PTY master, fork is called. As we mentioned before, we want to
wait to call ptys open until in the child and after calling setsid to establish a new
session. When it calls setsid, the child is not a process group leader, so the three steps
listed in Section 9.5 occur: (a) a new session is created with the child as the session
leader, (b) a new process group is created for the child, and (c) the child loses any
association it might have had with its previous controlling terminal. Under Linux and
Solaris, the slave becomes the controlling terminal of this new session when
ptys_open is called. Under FreeBSD and Mac OS X, we have to call ioctl with an
argument of TIOCSCTTY to allocate the controlling terminal. (Linux also supports the
TIOCSCTTY ioctl command.) The two structures termios and winsize are then
initialized in the child. Finally, the slave file descriptor is duplicated onto standard
input, standard output, and standard error in the child. This means that whatever
process the caller execs from the child will have these three descriptors connected to
the slave PTY (its controlling terminal).

After the call to fork, the parent just returns the PTY master descriptor and the
process ID of the child. In the next section, we use the pty_fork function in the pty
program.

#include "apue.h"
#include <termios.h>
#ifndef TIOCGWINSZ
#include <sys/ioctl.h>
fendif

pid_t

pty_fork(int *ptrfdm, char *slave name, int slave_namesz,
const struct termios *slave termios,
const struct winsize *slave_winsize)

int fdm, fds;
pid_t pid;
char pts_name [20] ;

if ((fdm = ptym open(pts_name, sizeof (pts_name))) < 0)
err_sys("can’'t open master pty: %s, error %d", pts_name, fdm);

if (slave_name != NULL) {
/*
* Return name of slave. Null terminate to handle case
* where strlen(pts_name) > slave_namesz.

*/
strncpy (slave name, pts_name, slave_namesz) ;
slave_name[slave namesz - 1] = '\0’;

}

if ((pid = fork()) < 0) {
return(-1) ;

Section 19.4 pty_ fork Function

693

} else if (pid == 0) { /* child */
if (setsid() < 0)
err_sys("setsid error");

/*
* System V acquires controlling terminal on open{() .
*/
if ((fds = ptys_open(pts_name)) < 0)
err sys("can’t open slave pty");
close (fdm) ; /* all done with master in child */

#if defined (TIOCSCTTY)
/*
* TIOCSCTTY is the BSD way to acquire a controlling terminal.
*/
if (ioctl (fds, TIOCSCTTY, (char *)0) < 0)
err_sys ("TIOCSCTTY error");

#endif
/*
* Set slave’s termios and window size.
*/
if (slave termios != NULL) {
if (tcsetattr(fds, TCSANOW, slave_termios) < 0)
err_sys("tcsetattr error on slave pty");
}
if (slave winsize != NULL) {
if (ioctl(fds, TIOCSWINSZ, slave_winsize) < 0)
err_sys("TIOCSWINSZ error on slave pty");
} .
/*
* glave becomes stdin/stdout/stderr of child.
*/
if (dup2(fds, STDIN_FILENO) = STDIN__FILENO)
err_sys ("dup2 error to stdin");
if (dup2(fds, STDOUT_FILENO) != STDOUT_FILENO)
err_sys("dup2 error to stdout");
if (dup2(fds, STDERR__FILENO) | = STDERR_FILENO)
err_sys("dup2 error to stderr") ;
if (fds != STDIN_FILENO && fds != STDOUT_FILENO &&
fds != STDERR__FILENO)
close (fds);
return(0) ; /* child returns 0 just like fork() */
} else { /* parent */
ptrfdm = fdm; / return fd of master */
return (pid); /* parent returns pid of child */
}
}

Figure 19.11 The pty_fork function

694

Pseudo Terminals Chapter 19

19.5

pty Program

The goal in writing the pty program is to be able to type
pty prog argl arg2

instead of
prog argl arg2

When we use pty to execute another program, that program is executed in a session of
its own, connected to a pseudo terminal.

Let’s look at the source code for the pty program. The first file (Figure 19.12)
contains the main function. It calls the pty fork function from the previous section.

#include "apue.h"

#include <termios.h>

#ifndef TIOCGWINSZ

#include <sys/ioctl.h> /* for struct winsize */
#endif

#ifdef LINUX
#define OPTSTR "+d:einv"

#else

#define OPTSTR "d:einv"

#endif

static void set_noecho (int) ; /* at the end of this file */
void do_driver(char *); /* in the file driver.c */
void loop (int, int); /* in the file loop.c */

int

main(int argc, char *argv(])

{

int fdm, c, ignoreeof, interactive, noecho, verbose;
pid t pid;

char *driver;

char slave_name [20] ;

struct termios orig termios;
struct winsize size;

interactive =
ignoreeof = 0;
noecho = 0;
verbose = 0;
driver = NULL;

isatty (STDIN_FILENO) ;.

opterr = 0; /* don’t want getopt() writing to stderr */
while ((c = getopt(argc, argv, OPTSTR)) != EOF) {

switch (c) {

case 'd’': /* driver for stdin/stdout */

driver = optarg;
break;

Section 19.5 pty Program 695

case 'e’: /* noecho for slave pty’s line discipline */
noecho = 1;
break;

case ‘i’: /* ignore EOF on standard input */
ignoreeof = 1;
break;

case 'n’: /* not interactive */
interactive = 0;
break;

case 'v’: /* verbose */
verbose = 1;
break;

case '?':
err_quit ("unrecognized option: -%c", optopt) ;

if (optind >= argc)
err quit("usage: pty [-d driver -einv] program [arg ... 1")

if (interactive) { /* fetch current termios and window size */
if (tcgetattr (STDIN FILENO, &orig_termios) < 0)
err_sys("tcgetattr error on stdin");
if (ioctl (STDIN FILENO, TIOCGWINSZ, (char *) &size) < 0)
err sys("TIOCGWINSZ error");
pid = pty. fork(&fdm, slave_name, sizeof (slave_name),
&orig_termios, &size);
} else {
pid = pty fork(&fdm, slave_name, sizeof (slave_name),
NULL, NULL);

}

if (pid < 0) {
err_sys("fork error");

} else if (pid == 0) { /* child */
if (noecho)
set“noecho(STDIN_FILENO); /* stdin is slave pty */

if (execvp(argv[optind], &argvloptind]) < 0)
err_sys("can’'t execute: %s", argv[optind]) ;

}

if (verbose) {
fprintf (stderr, "slave name = %s\n", slave_name);
if (driver != NULL)
fprintf (stderr, "driver = %s\n", driver);

}

if (interactive && driver == NULL) {
if (tty_raw(STDIN_FILENO) < 0) /* user’s tty to raw mode */

696

Pseudo Terminals Chapter 19

err_sys("tty raw error");
if (atexit (tty atexit) < 0) /* reset user’s tty on exit */
err sys("atexit error");

}
if (driver)
do_driver(driver); /* changes our stdin/stdout */
loop (fdm, ignoreeof); /* copies stdin -> ptym, ptym -> stdout */
exit (0);

}

static void
set_noecho (int £d) /* turn off echo (for slave pty) */

{

struct termios stermios;

if (tcgetattr(fd, &stermios) < 0)
err sys("tcgetattr error");

stermios.c_lflag &= " (ECHO | ECHOE | ECHOK | ECHONL) ;
/*

* Also turn off NL to CR/NL mapping on output.

*/
stermios.c_oflag &= ~ (ONLCR) ;

if (tcsetattr(fd, TCSANOW, &stermios) < 0)
err sys("tcsetattr error");

Figure 19.12 The main function for the pty program

In the next section, we'll look at the various command-line options when we examine
different uses of the pty program. The getopt function helps us parse command-line
arguments in a consistent manner. We’ll discuss getopt in more detail in Chapter 21.

Before calling pty fork, we fetch the current values for the termios and
winsize structures, passing these as arguments to pty_fork. This way, the PTY slave
assumes the same initial state as the current terminal.

After returning from pty_fork, the child optionally turns off echoing for the slave
PTY and then calls execvp to execute the program specified on the command line. All
remaining command-line arguments are passed as arguments to this program.

The parent optionally sets the user’s terminal to raw mode. In this case, the parent
also sets an exit handler to reset the terminal state when exit is called. We describe the
do_driver function in the next section.

The parent then calls the function loop (Figure 19.13), which copies everything
received from the standard input to the PTY master and everything from the PTY
master to standard output. For variety, we have coded it in two processes this time,
although a single process using select, poll, or multiple threads would also work.

Section 19.5 pty Program 697
#include "apue.h"
#define BUFFSIZE 512
static void sig_term(int);
static volatile sig atomic_t sigcaught; /* set by signal handler */

void
loop (int ptym, int ignoreeof)

{

pid_t child;
int nread;
char buf [BUFFSIZE] ;

if ((child = fork()) < 0) {
err_sys("fork error");

} else if (child == 0) { /* child copies stdin to ptym */

for (; ;) |

if ((nread = read(STDIN_ FILENO, buf, BUFFSIZE)) < 0)

err_sys("read error from stdin");

else if (nread == 0)
break; /* EOF on stdin means we’'re done */
if (writen(ptym, buf, nread) != nread)
err sys("writen error to master pty");
}
/*

* We always terminate when we encounter an EOF on stdin,
* but we notify the parent only if ignoreeof is 0.

*/

if (ignoreeof == 0)

kill (getppid (), SIGTERM) ; /* notify parent */

exit (0); /* and terminate; child can’t return */
}
/’*
* Parent copies ptym to stdout.
*/
if (signal intr(SIGTERM, sig_term) == SIG_ERR)
err_sys("signal_intr error for SIGTERM");
for (; ;) |
if ((nread = read(ptym, buf, BUFFSIZE)) <= 0)
break; /* signal caught, error, or EOF */
if (writen(STDOUT_ FILENO, buf, nread) != nread)

err_sys("writen error to stdout");

}
/*

* There are three ways to get here: sig term() below caught the
*+ SIGTERM from the child, we read an EOF on the pty master (which

* means we have to signal the child to stop), or an error.

*/

698 Pseudo Terminals Chapter 19
if (sigcaught == 0) /* tell child if it didn’t send us the signal */
kill (child, SIGTERM) ;
/*
* Parent returns to caller.
*/
}
/ *
* The child sends us SIGTERM when it gets EOF on the pty slave or
* when read() fails. We probably interrupted the read() of ptym.
*/
static void
sig_term(int signo)
{
sigcaught = 1; /* just set flag and return */
}
Figure 19.13 The loop function
Note that, with two processes, when one terminates, it has to notify- the other. We use
the SIGTERM signal for this notification.
19.6 Using the pty Program
We'll now look at various examples with the pty program, seeing the need for the
command-line options.
If our shell is the Korn shell, we can execute
pty ksh
and get a brand new invocation of the shell, running under a pseudo terminal.
If the file ttyname is the program we showed in Figure 18.16, we can run the pty
program as follows:
$ who
sar :0 Oct 5 18:07
sar pts/0 Oct 5 18:07
sar pts/1 Oct 5 18:07
sar pts/2 Oct 5 18:07
sar pts/3 Oct 5 18:07
sar pts/4 Oct 5 18:07 pts/4 is the highest PTY currently in use
$ pty ttyname run program in Figure 18.16 from PTY
fd 0: /dev/pts/5 pts/5 is the next available PTY
fd 1: /dev/pts/5
fd 2: /dev/pts/s
utmp File

In Section 6.8, we described the utmp file that records all users currently logged in to a
UNIX system. The question is whether a user running a program on a pseudo terminal

Section 19.6 Using the pty Program 699

is considered logged in. In the case of remote logins, telnetd and rlogind,
obviously an entry should be made in the utmp file for the user logged in on the pseudo
terminal. There is little agreement, however, whether users running a shell on a pseudo
terminal from a window system or from a program, such as script, should have
entries made in the utmp file. Some systems record these and some don't. If a system
doesn’t record these in the utmp file, the who(1) program normally won’t show the
corresponding pseudo terminals as being used.

Unless the utmp file has other-write permission enabled (which is considered to be
a security hole), random programs that use pseudo terminals won’t be able to write to
this file.

Job Control Interaction

If we run a job-control shell under pty, it works normally. For example,
pty ksh

runs the Korn shell under pty. We can run programs under this new shell and use job
control just as we do with our login shell. But if we run an interactive program other
than a job-control shell under pty, as in

pty cat

everything is fine until we type the job-control suspend character. At that point, the
job-control character is echoed as "z and is ignored. Under earlier BSD-based systems,
the cat process terminates, the pty process terminates, and we’re back to our original
shell. To understand what’s going on here, we need to examine all the processes
involved, their process groups, and sessions. Figure 19.14 shows the arrangement when
pty cat is running.

When we type the suspend character (Control-Z), it is recognized by the line
discipline module beneath the cat process, since pty puts the terminal (beneath the
pty parent) into raw mode. But the kernel won't stop the cat process, because it
belongs to an orphaned process group (Section 9.10). The parent of cat is the pty
parent, and it belongs to another session.

Historically, implementations have handled this condition differently. POSIX.1 says
only that the SIGTSTP signal can’t be delivered to the process., Systems derived from
4.3BSD delivered SIGKILL instead, which the process can’t even catch. In 4.4BSD, this
behavior was changed to conform to POSIX.1. Instead of sending SIGKILL, the 4.4BSD
kernel silently discards the SIGTSTP signal if it has the default disposition and is to be
delivered to a process in an orphaned process group. Most current implementations
follow this behavior.

When we use pty to run a job-control shell, the jobs invoked by this new shell are
never members of an orphaned process group, because the job-control shell always
belongs to the same session. In that case, the Control-Z that we type is sent to the
process invoked by the shell, not to the shell itself.

The only way to avoid this inability of the process invoked by pty to handle
job-control signals is to add yet another command-line flag to pty, telling it to recognize

700 Pseudo Terminals Chapter 19

session session

’_ process group process group —l ‘—- pI'OCGSS gmup j
[R [bt ! [t =

! | - | | | l ’ | | I
| login | ‘ pty pty ! i |

. cat

1 I shell I ! parent child ! I I ! I ‘
| | | I I |
Lom e J D . U P [_A___

S T

terminal
line discipline

terminal
line discipline

, AN

terminal PTY master PTY slave

device driver

terminal

Figure 19.14 Process groups and sessions for pty cat

the job control suspend character itself (in the pty child) instead of letting the character
get all the way through to the other line discipline.

Watching the Output of Long-Running Programs

Another example of job-control interaction with the pty program is with the example in
Figure 19.6. If we run the program that generates output slowly as

pty slowout > file.out &

the pty process is stopped immediately when the child tries to read from its standard
input (the terminal). The reason is that the job is a background job and gets job-control
stopped when it tries to access the terminal. If we redirect standard input so that pty
doesn’t try to read from the terminal, as in

pty slowout < /dev/null > file.out &

the pty program stops immediately because it reads an end of file on its standard input
and terminates. The solution for this problem is the - i option, which says to ignore an
end of file on the standard input:

pty -i slowout < /dev/null > file.out &
This flag causes the pty child in Figure 19.13 to exit when the end of file is encountered,

but the child doesn't tell the parent to terminate. Instead, the parent continues copying
the PTY slave output to standard output (the file file.out in the example).

Section 19.6 Using the pty Program 701

script Program
Using the pty program, we can implement the script(l) program as the following
shell script:

#!/bin/sh
pty "${SHELL:-/bin/sh}" | tee typescript

Once we run this shell script, we can execute the ps command to see all the process
relationships. Figure 19.15 details these relationships. '

typescript
file
login pty m
shell sh tee parent child ksh ps
pipe
line line
discipline discipline
A
\
Y PTY PTY
master slave
It :

Figure 19.15 Arrangement of processes for script shell script

In this example, we assume that the SHELL variable is the Korn shell (probably
/bin/ksh). As we mentioned earlier, script copies only what is output by the new
shell (and any processes that it invokes), but since the line discipline module above the
PTY slave normally has echo enabled, most of what we type also gets written to the
typescript file.

Running Coprocesses

In Figure 15.8, the coprocess couldn’t use the standard 1/O functions, because standard
input and standard output do not refer to a terminal, so the standard 1/O functions treat
them as fully buffered. If we run the coprocess under pty by replacing the line

702 Pseudo Terminals Chapter 19

it (execl("./add2", "add2", {(char *)0) < 0)
with
if (execl("./pty", "pty", "-e", "add2", (char *)0) < 0)

the program now works, even if the coprocess uses standard 1/0.

Figure 19.16 shows the arrangement of processes when we run the coprocess with a
pseudo terminal as its input and output. It is an expansion of Figure 19.5, showing all
the process connections and data flow. The box labeled “driving program” is the
program from Figure 15.8, with the exec1 changed as described previously.

fork, exec

. fork pty pty add2
driving program exec | parent | fork child (coprocess)
. } i
. pipe2 _ §
pipel
terminal terminal
line discipline line discipline
/ y
te'r mma.l PTY master PTY slave
device driver
) L. y |
1 il -

“user at a

Figure 19.16 Running a coprocess with a pseudo terminal as its input and output

This example shows the need for the -e (no echo) option for the pty program. The
pty program is not running interactively, because its standard input is not connected to
a terminal. In Figure 19.12, the interactive flag defaults to false, since the call to
isatty returns false. This means that the line discipline above the actual terminal
remains in a canonical mode with echo enabled. By specifying the -e option, we turn
off echo in the line discipline module above the PTY slave. If we don’t do this,
everything we type is echoed twice—by both line discipline modules.

We also have the -e option turn off the ONLCR flag in the termios structure to
prevent all the output from the coprocess from being terminated with a carriage return
and a newline. :

Testing this example on different systems showed another problem that we alluded
to in Section 14.8 when we described the readn and writen functions. The amount of
data returned by a read, when the descriptor refers to something other than an

Section 19.6 Using the pty Program 703

ordinary disk file, can differ between implementations. This coprocess example using
pty gave unexpected results that were tracked down to the read function on the pipe
in the program from Figure 15.8 returning less than a line. The solution was to not use
the program shown in Figure 15.8, but to use the version of this program from
Exercise 15.5 that was modified to use the standard I/O library, with the standard I/O
streams for the both pipes set to line buffering. By doing this, the fgets function does
as many reads as required to obtain a complete line. The while loop in Figure 15.8
assumes that each line sent to the coprocess causes one line to be returned.

Driving Interactive Programs Noninteractively

Although it’s tempting to think that pty can run any coprocess, even a coprocess that is
interactive, it doesn’t work. The problem is that pty just copies everything on its
standard input to the PTY and everything from the PTY to its standard output, never
looking at what it sends or what it gets back.

As an example, we can run the telnet command under pty talking directly to the
remote host:

pty telnet 192.168.1.3

Doing this provides no benefit over just typing telnet 192.168.1.3, but we would
like to run the telnet program from a script, perhaps to check some condition on the
remote host. If the file telnet . cmd contains the four lines

sar
passwd
uptime
exit

the first line is the user name we use to log in to the remote host, the second line is the
password, the third line is a command we’d like to run, and the fourth line terminates
the session. But if we run this script as

pty -i < telnet.cmd telnet 192.168.1.3

it doesn’t do what we want. What happens is that the contents of the file telnet.cmd
are sent to the remote host before it has a chance to prompt us for an account name and
password. When it turns off echoing to read the password, 1ogin uses the tcsetattr
option, which discards any data already queued. Thus, the data we send is thrown
away.

When we run the telnet program interactively, we wait for the remote host to
prompt for a password before we type it, but the pty program doesn’t know to do this.
This is why it takes a more sophisticated program than pty, such as expect, to drive
an interactive program from a script file.

Even running pty from the program in Figure 15.8, as we showed earlier, doesn’t
help, because the program in Figure 15.8 assumes that each line it writes to the pipe
generates exactly one line on the other pipe. With an interactive program, one line of
input may generate many lines of output. Furthermore, the program in Figure 15.8

704 Pseudo Terminals Chapter 19

always sent a line to the coprocess before reading from it. This won’t work when we
want to read from the coprocess before sending it anything.

There are a few ways to proceed from here to be able to drive an interactive
program from a script. We could add a command language and interpreter to pty, but
a reasonable command language would probably be ten times larger than the pty
program. Another option is to take a command language and use the pty fork
function to invoke interactive programs. This is what the expect program does.

We'll take a different path and just provide an option (-d) to allow pty to be
connected to a driver process for its input and output. The standard output of the
driver is pty’s standard input and vice versa. This is similar to a coprocess, but on “the
other side” of pty. The resulting arrangement of processes is almost identical to
Figure 19.16, but in the current scenario, pty does the fork and exec of the driver
process. Also, instead of two half-duplex pipes, we’ll use a single bidirectional pipe
between pty and the driver process.

Figure 19.17 shows the source for the do_driver function, which is called by the
main function of pty (Figure 19.12) when the -d option is specified.

#include "apue.h"

void
do_driver (char *driver)
{
pid_t child;
int pipel2];
/*
* Create a stream pipe to communicate with the driver.
*/

if (s_pipe(pipe) < 0)
err_sys("can’'t create stream pipe");

if ((child = fork()) < 0) {
err_sys("fork error");

} else if (child == 0) { /* child */
close (pipe(l]);

/* stdin for driver */
if (dup2 (pipel0], STDIN_FILENO) != STDIN_ FILENO)
err sys("dup2 error to stdin");

/* stdout for driver */

if (dup2(pipe[0], STDOUT FILENO) != STDOUT FILENO)
err_sys("dup2 error to stdout");
if (pipe[0] != STDIN_FILENO && pipe (0] != STDOUT_FILENO)

close (pipe[0]) ;

/* leave stderr for driver alone */
execlp(driver, driver, (char *)0);
err sys("execlp erxrror for: %s", driver);

Section 19.7 Advanced Features 705

close (pipel[0]); /* parent */

if (dup2(pipe(l], STDIN FILENO) != STDIN FILENO)
err sys{"dup2 error to stdin");

if (dup2(pipell], STDOUT FILENO) != STDOUT_ FILENO)
err_sys("dup2 error to stdout");

if (pipell] != STDIN_FILENO && pipe({l] != STDOUT_FILENO)

close (pipe(1]);

/*
* Parent returns, but with stdin and stdout connected
* to the driver.

*/

Figure 19.17 The do_driver function for the pty program

By writing our own driver program that is invoked by pty, we can drive interactive
programs in any way desired. Even though it has its standard input and standard
output connected to pty, the driver process can still interact with the user by reading
and writing /dev/tty. This solution still isn’t as general as the expect program, but
it provides a useful option to pty for fewer than 50 lines of code.

19.7 Advanced Features
Pseudo terminals have some additional capabilities that we briefly mention here. These
capabilities are further documented in Sun Microsystems [2002] and the BSD pty(4)
manual page.

Packet Mode

Packet mode lets the PTY master learn of state changes in the PTY slave. On Solaris,
this mode is enabled by pushing the STREAMS module pckt onto the PTY master side.
We showed this optional module in Figure 19.2. On FreeBSD, Linux, and Mac OS X,
this mode is enabled with the TTOCPKT ioctl command.

The details of packet mode differ between Solaris and the other platforms. Under
Solaris, the process reading the PTY master has to call getmsg to fetch the messages
from the stream head, because the pckt module converts certain events into nondata
STREAMS messages. With the other platforms, each read from the PTY master returns
a status byte followed by optional data.

Regardless of the implementation details, the purpose of packet mode is to inform
the process reading the PTY master when the following events occur at the line
discipline module above the PTY slave: when the read queue is flushed, when the write
queue is flushed, whenever output is stopped (e.g., Control-S), whenever output is
restarted, whenever XON/XOFF flow control is enabled after being disabled, and
whenever XON/XOFF flow control is disabled after being enabled. These events are
used, for example, by the rlogin client and rlogind server.

706

Pseudo Terminals Chapter 19

Remote Mode

A PTY master can set the PTY slave into remote mode by issuing an ioctl of
TIOCREMOTE. Although FreeBSD 5.2.1, Mac OS X 10.3, and Solaris 9 use the same
command to enable and disable this feature, under Solaris the third argument to ioct1
is an integer, whereas with FreeBSD and Mac OS X, it is a pointer to an integer. (Linux
2.4.22 doesn’t support this command.)

When it sets this mode, the PTY master is telling the PTY slave’s line discipline
module not to perform any processing of the data that it receives from the PTY master,
regardless of the canonical/noncanonical flag in the slave’s termios structure. Remote
mode is intended for an application, such as a window manager, that does its own line
editing.

Window Size Changes

The process above the PTY master can issue the ioctl of TIOCSWINSZ to set the
window size of the slave. If the new size differs from the current size, a SIGWINCH
signal is sent to the foreground process group cf the PTY slave.

Signal Generation

19.8

The process reading and writing the PTY master can send signals to the process group
of the PTY slave. Under Solaris 9, this is done with an ioctl of TIOCSIGNAL, with the
third argument set to the signal number. With FreeBSD 5.2.1 and Mac OS X 10.3, the
ioctl is TIOCSIG, and the third argument is a pointer to the .integer signal number.
(Linux 2.4.22 doesn’t support this ioct 1 command either.)

Summary

We started this chapter with an overview of how to use pseudo terminals and a look at
some use cases. We continued by examining the code required to open a pseudo
terminal under the four platforms discussed in this text. We then used this code to
provide the generic pty fork function that can be used by many different
applications. We used this function as the basis for a small program (pty), which we
then used to explore many of the properties of pseudo terminals.

Pseudo terminals are used daily on most UNIX systems to provide network logins.
We've examined other uses for pseudo terminals, from the script program to driving
interactive programs from a batch script.

Exercises

19.1 When we remotely log in to a BSD system using either telnet or rlogin, the ownership
of the PTY slave and its permissions are set, as we described in Section 19.3.2. How does
this happen?

Chapter 19

Exercises 707

19.2

19.3

19.4

19.5

19.6

19.7

19.8

19.9

Modify the function grantpt from Figure 19.9 to invoke a set-user-ID program to change
the ownership and protection of the PTY slave device on a BSD system (similar to what the
Solaris version of the grantpt function does).

Use the pty program to determine the values used by your system to initialize a slave
PTY’s termios structure and winsize structure.

Recode the 1oop function (Figure 19.13) as a single process using either select or poll.

In the child process after pty_fork returns, standard input, standard output, and standard
error are all open for read—write. Can you change standard input to be read-only and the
other two to be write-only?

In Figure 19.14, identify which process groups are foreground and which are background,
and identify the session leaders.

In Figure 19.14, in what order do the processes terminate when we type the end-of-file
character? Verify this with process accounting, if possible.

The script(1) program normally adds to the beginning of the output file a line with the
starting time, and to the end of the output file another line with the ending time. Add these
features to the simple shell script that we showed.

Explain why the contents of the file data are output to the terminal in the following
example, when the program ttyname only generates output and never reads its input.

$ cat data a file with two lines

hello,

world

$ pty -i < data ttyname -1 says ignore eof on stdin

hello, where did these two lines come from?
world

fd 0: /dev/ttyps we expect these three lines from ttyname

fd 1: /dev/ttyps
fd 2: /dev/ttyp5s

19.10 Write a program that calls pty_fork and have the child exec another program that you

must write. The new program that the child execs must catch SIGTERM and SIGWINCH.
When it catches a signal, the program should print that it did; for the latter signal, it should
also print the terminal’s window size. Then have the parent process send the SIGTERM
signal to the process group of the PTY slave with the ioctl we described in Section 19.7.
Read back from the slave to verify that the signal was caught. Follow this with the parent
setting the window size of the PTY slave and read back the slave’s output again. Have the
parent exit and determine whether the slave process also terminates; if so, how does it
terminate?

20.1

20.2

20

A Database Library

Introduction

During the early 1980s, the UNIX System was considered a hostile environment for
running multiuser database systems. (See Stonebraker [1981] and Weinberger [1982].)
Earlier systems, such as Version 7, did indeed present large obstacles, since they did not
provide any form of IPC (other than half-duplex pipes) and did not provide any form of
byte-range locking. Many of these deficiencies were remedied, however. By the late
1980s, the UNIX System had evolved to provide a suitable environment for running
reliable, multiuser database systems. Since then, numerous commercial firms have
offered these types of database systems.

In this chapter, we develop a simple, multiuser database library of C functions that
any program can call to fetch and store records in a database. This library of C
functions is usually only one part of a complete database system. We do not develop
the other pieces, such as a query language, leaving these items to the many textbooks on
database systems. Our interest is the UNIX System interface a database library requires
and how that interface relates to the topics we've already covered (such as
record—byte-range—Ilocking, in Section 14.3).

History

One popular library of database functions in the UNIX System is the dbm(3) library.
This library was developed by Ken Thompson and uses a dynamic hashing scheme. It
was originally provided with Version 7, appears in all BSD releases, and was also
provided in SVR4’s BSD-compatibility library [AT&T 1990c]. The BSD developers
extended the dbm library and called it ndbm. The ndbm library was included in BSD as
well as in SVR4. The ndbm functions are standardized in the XSI extensions of the
Single UNIX Specification.

710

A Database Library Chapter 20

20.3

Seltzer and Yigit [1991] provide a detailed history of the dynamic hashing algorithm
used by the dbm library and other implementations of this library, including gdbm, the
GNU version of the dbm library. Unfortunately, a basic limitation of all these
implementations is that none allows concurrent updating of the database by multiple
processes. These implementations provide no type of concurrency controls (such as
record locking).

4.4BSD provided a new db(3) library that supports three forms of access: (a) record
oriented, (b) hashing, and (c) a B-tree. Again, no form of concurrency was provided (as
was plainly stated in the BUGS section of the db(3) manual page).

Sleepycat Software (http://www.sleepycat .com) provides versions of the db library that
do support concurrent access, locking, and transactions.

Most commercial database libraries do provide the concurrency controls required
for multiple processes to update a database simultaneously. These systems typically
use advisory locking, as we described in Section 14.3, but they often implement their
own locking primitives to avoid the overhead of a system call to acquire an uncontested
lock. These commercial systems usually implement their database using B+ trees
[Comer 1979] or some dynamic hashing technique, such as linear hashing [Litwin 1980]
or extendible hashing [Fagin et al. 1979].

Figure 20.1 summarizes the database libraries commonly found in the four
operating systems described in this book. Note that on Linux, the gdbm library
provides support for both dbm and ndbm functions.

FreeBSD Linux Mac OS X Solaris
521 2.4.22 10.3 9

dbm gdbm .
ndbm XSI . gdbm . .
db

Library || POSIX.1

Figure 20.1 Support for database libraries on various platforms

The Library

The library we develop in this chapter will be similar to the ndbm library, but we’ll add
the concurrency control mechanisms to allow multiple processes to update the same
database at the same time. We first describe the C interface to the database library, then
in the next section describe the actual implementation.

When we open a database, we are returned a handle (an opaque pointer)
representing the database. We’ll pass this handle to the remaining database functions.

#include "apue_db.h"
DBHANDLE db open(const char *pathname, int oflag, ... /* int mode */);

Returns: database handle if OK, NULL on error

void db close (DBHANDLE db) ;

Section 20.3 The Library 711

If db_open is successful, two files are created: pathname.idx is the index file, and
pathname.dat is the data file. The oflag argument is used as the second argument to open
(Section 3.3) to specify how the files are to be opened (read-only, read-write, create file if
it doesn’t exist, etc.). The mode argument is used as the third argument to open (the file
access permissions) if the database files are created. ,

When we’re done with a database, we call db close. It closes the index file and
the data file and releases any memory that it allocated for internal buffers.

When we store a new record in the database, we have to specify the key for the
record and the data associated with the key. If the database contained personnel
records, the key could be the employee ID, and the data could be the emplovee’s name,
address, telephone number, date of hire, and the like. Our implementation requires that
the key for each record be unique. (We can’t have two employee records with the same
employee ID, for example.)

#include "apue db.h"

int db_store (DBHANDLE db, const char *key, const char *data,
int flag) ;

Returns: 0 if OK, nonzero on error (see following)

The key and data arguments are null-terminated character strings. The only restriction
on these two strings is that neither can contain null bytes. They may contain, for
example, newlines.

The flag argument can be DB_INSERT (to insert a new record), DB_REPLACE (to
replace an existing record), or DB_STORE (to either insert or replace, whichever is
appropriate). These three constants are defined in the apue_db . h header. If we specify
either DB_INSERT or DB_STORE and the record does not exist, a new record is inserted.
If we specify either DB_REPLACE or DB_STORE and the record already exists, the
existing record is replaced with the new record. If we specify DB REPLACE and the
record doesn’t exist, we set errno to ENOENT and return —1 without adding the new
record. If we specify DB_INSERT and the record alreadv exists, no record is inserted. In
this case, the return value is 1 to distinguish this from a normal error return (~1).

We can fetch any record from the database by specifying its key.

#include "apue_db.h"

char *db_fetch (DBHANDLE db, const char *key);

Returns: pointer to data if OK, NULL if record not found

The return value is a pointer to the data that was stored with the key, if the record is
found. We can also delete a record from the database by specifying its key.

#include "apue db.h"

int db_delete (DBHANDLE db, const char *key);

Returns: 0 if OK, -1 if record not found

712

A Database Library Chapter 20

20.4

In addition to fetching a record by specifying its key, we can go through the entire
database, reading each record in turn. To do this, we first call db_rewind to rewind the
database to the first record and then call db_nextrec in a loop to read each sequential
record.

#include "apue db.h"
void db rewind (DBHANDLE db) ;

char *db nextrec (DBHANDLE db, char *key);

Returns: pointer to data if OK, NULL on end of file

If key is a non-null pointer, db_nextrec returns the key by copying it to the memory
starting at that location.

There is no order to the records returned by db_nextrec. All we're guaranteed is
that we’ll read each record in the database once. If we store three records with keys of
A, B, and C, in that order, we have no idea in which order db_nextrec will return the
three records. It might return B, then A, then C, or some other (apparently random)
order. The actual order depends on the implementation of the database.

These seven functions provide the interface to the database library. We now
describe the actual implementation that we have chosen.

Implementation Overview

Database access libraries often use two files to store the information: an index file and a
data file. The index file contains the actual index value (the key) and a pointer to the
corresponding data record in the data file. Numerous techniques can be used to
organize the index file so that it can be searched quickly and efficiently for any key:
hashing and B+ trees are popular. We have chosen to use a fixed-size hash table with
chaining for the index file. We mentioned in the description of db_open that we create
two files: one with a suffix of . idx and one with a suffix of . dat.

We store the key and the index as null-terminated character strings; they cannot
contain arbitrary binary data. Some database systems store numerical data in a binary
format (1, 2, or 4 bytes for an integer, for example) to save storage space. This
complicates the functions and requires more work to make the database files portable
between different systems. For example, if a network has two systems that use different
formats for storing binary integers, we need to handle this if we want both systems to
access the database. (It is not at all uncommon today to have systems with different
architectures sharing files on a network.) Storing all the records, both keys and data, as
character strings simplifies everything. It does require additional disk space, but that is
a small cost for portability.

With db_store, only one record for each key is allowed. Some database systems
allow a key to have multiple records and then provide a way to access all the records
associated with a given key. Additionally, we have only a single index file, meaning
that each data record can have only a single key (we don’t support secondary keys).

Section 20.4 Implementation Overview 713

Some database systems allow each record to have multiple keys and often use one index
file per key. Each time a new record is inserted or deleted, all index files must be
updated accordingly. (An example of a file with multiple indexes is an employee file.
We could have one index whose key is the employee ID and another whose key is the
employee’s Social Security number. Having an index whose key is the employee name
could be a problem, as names need not be unique.)

Figure 20.2 shows a general picture of the database implementation.

offset of first index
record on free list

hash table
I‘——‘—FL index records _]
Ul -
index file: free |chain|chain . chain \n
ptr | ptr | ptr ptr

' - - I
e [
offset of first index -7 [
record on this hash chain -7 1
o7 |
-7 1
7 i [one index record !
L7 r !

: idx K s dat se dat

len €y Pl ot |°°P| len

le
-

idx len

offset of next index
record on this hash chain

one data record

data file:

dat len

Figure 20.2 Arrangement of index file and data file

The index file consists of three portions: the free-list pointer, the hash table, and the
index records. In Figure 20.2, all the fields called ptr are simply file offsets stored as an
ASCII number.

To find a record in the database, given its key, db_fetch calculates the hash value
of the key, which leads to one hash chain in the hash table. (The chain ptr field could be
0, indicating an empty chain.) We then follow this hash chain, which is a linked list of

714 A Database Library Chapter 20

all the index records with this hash value. When we encounter a chain ptr value of 0,
we’ve hit the end of the hash chain.

Let’s look at an actual database file. The program in Figure 20.3 creates a new
database and writes three records to it. Since we store all the fields in the database as
ASCII characters, we can look at the actual index file and data file using any of the
standard UNIX System tools:

S 1s -1 db4.*
-rw-r--r-- 1 sar 28 Oct 19 21:33 db4.dat
-rw-r--r-- 1 sar 72 Oct 19 21:33 db4.idx
$ cat db4.idx

0 53 35 0

G 10Alpha:0:6

C 10beta:6:14

17 1llgamma:20:8
S cat db4.dat
datal
Data for beta
record3’

To keep this example small, we have set the size of each ptr field to four ASCII
characters; the number of hash chains is three. Since each ptr is a file offset, a
four-character field limits the total size of the index file and data file to 10,000 bytes.
When we do some performance measurements of the database system in Section 20.9,
we set the size of each ptr field to six characters (allowing file sizes up to 1 million
bytes), and the number of hash chains to more than 100.

The first line in the index file

0 53 35 0

is the free-list pointer (0, the free list is empty) and the three hash chain pointers: 53, 35,
and 0. The next line

0 10Alpha:0:6

shows the format of each index record. The first field (0) is the four-character chain
pointer. This record is the end of its hash chain. The next field (10) is the four-character
idx len, the length of the remainder of this index record. We read each index record
using two reads: one to read the two fixed-size fields (the chain ptr and idx len) and
another to read the remaining (variable-length) portion. The remaining three
fields—key, dat off, and dat len—are delimited by a separator character (a colon in this
case). We need the separator character, since each of these three fields is variable length.
The separator character can’t appear in the key. Finally, a newline terminates the index
record. The newline isn't required, since idx len contains the length of the record. We
store the newline to separate each index record so we can use the normal UNIX System
tools, such as cat and more, with the index file. The key is the value that we specified
when we wrote the record to the database. The data offset (0) and data length (6) refer
to the data file. We can see that the data record does start at offset 0 in the data file and
has a length of 6 bytes. (As with the index file, we automatically append a newline to

Section 20.4 Implementation Overview 715

#include "apue.h"
#include "apue_db.h"
#include <fcntl.h>

int
main (void)

{

DBHANDLE db;

if ({(db = db_open("db4", O RDWR | O _CREAT | O TRUNC,
FILE_MODE)) == NULL)
err sys("db_open error");

if (db_store(db, "Alpha", "datal", DB INSERT) != 0)
err_quit ("db_store error for alpha"};
if (db_store(db, "beta", "Data for beta", DB _INSERT) != 0)
err_quit ("db_store error for beta");
if (db_store(db, "gamma", "record3", DB INSERT) != 0)
(

err_quit("db_store error for gamma");

db _close(db);
exit (0);

Figure 20.3 Create a database and write three records to it

each data record, so we can use the normal UNIX System tools with the file. This
newline at the end is not returned to the caller by db_fetch.)

If we follow the three hash chains in this example, we see that the first record on the
first hash chain is at offset 53 (gamma). The next record on this chain is at offset 17
(alpha), and this is the last record on the chain. The first record on the second hash
chain is at offset 35 (beta), and it’s the last record on the chain. The third hash chain is
empty.

Note that the order of the keys in the index file and the order of their corresponding
records in the data file is the same as the order of the calls to db_store in Figure 20.3.
Since the O_TRUNC flag was specified for db_open, the index file and the data file were
both truncated and the database initialized from scratch. In this case, db_store just
appends the new index records and data records to the end of the corresponding file.
We'll see later that db_store can also reuse portions of these two files that correspond
to deleted records.

The choice of a fixed-size hash table for the index is a compromise. It allows fast
access as long as each hash chain isn’t too long. We want to be able to search for any
key quickly, but we don’t want to complicate the data structures by using either a B-tree
or dynamic hashing. Dynamic hashing has the advantage that any data record can be
located with only two disk accesses (see Litwin [1980] or Fagin et al. [1979] for details).
B-trees have the advantage of traversing the database in (sorted) key order (something
that we can’t do with the db_nextrec function using a hash table.)

716 A Database Library Chapter 20

20.5 Centralized or Decentralized?

Given multiple processes accessing the same database, we can implement the functions
in two ways:

1. Centralized. Have a single process that is the database manager, and have it be
the only process that accesses the database. The functions contact this central
process using some form of IPC.

2. Decentralized. Have each function apply the required concurrency controls
(locking) and then issue its own I/O function calls.

Database systems have been built using each of these techniques. Given adequate
locking routines, the decentralized implementation is usually faster, because IPC is
avoided. Figure 20.4 depicts the operation of the centralized approach.

user process user process user process

centralized
db manager|

db access db access
library library

1/0

index file data file

Figure 20.4 Centralized approach for database access

We purposely show the IPC going through the kernel, as most forms of message
passing under the UNIX System operate this way. (Shared memory, as described in
Section 15.9, avoids this copying of the data.) We see with the centralized approach that
a record is read by the central process and then passed to the requesting process using

Section 20.5 Centralized or Decentralized? 717

IPC. This is a disadvantage of this design. Note that the centralized database manager
is the only process that does I/0O with the database files.

The centralized approach has the advantage that customer tuning of its operation
may be possible. For example, we might be able to assign different priorities to
different processes through the centralized process. This could affect the scheduling of
I/O operations by the centralized process. With the decentralized approach, this is
more difficult to do. We are usually at the mercy of the kernel’s disk 1/0 scheduling
policy and locking policy; that is, if three processes are waiting for a lock to become
available, which process gets the lock next? -

Another advantage of the centralized approach is that recovery is easier than with
the decentralized approach. All the state information is in one place in the centralized
approach, so if the database processes are killed, we have only one place to look to
identify the outstanding transactions we need to resolve to restore the database to a
consistent state.

The decentralized approach is shown in Figure 20.5. This is the design that we'll
implement in this chapter.

user process user process
db access db access
library library

i
!
|
1
1

record locking I/0 ‘kernel

|
I
f
I
|

index file data file

Figure 20.5 Decentralized approach for database access

The user processes that call the functions in the database library to perform 1/O are
considered cooperating processes, since they use byte-range locking to provide
concurrent access.

718

A Database Library Chapter 20

20.6

Concurrency

We purposely chose a two-file implementation (an index file and a data file) because
that is a common implementation technique. It requires us to handle the locking
interactions of both files. But there are numerous ways to handle the locking of these
two files.

Coarse-Grained Locking

The simplest form of locking is to use one of the two files as a lock for the entire
database and to require the caller to obtain this lock before operating on the database.
We call this coarse-grained locking. For example, we can say that the process with a read
lock on byte 0 of the index file has read access to the entire database. A process with a
write lock on byte 0 of the index file has write access to the entire database. We can use
the normal UNIX System byte-range locking semantics to allow any number of readers
at one time, but only one writer at a time. (Recall Figure 14.3.) The functions
db_fetch and db _nextrec require a read lock, and db_delete, db_store, and
db_open all require a write lock. (The reason db_open requires a write lock is that if
the file is being created, it has to write the empty free list and hash chains at the front of
the index file.)

The problem with coarse-grained locking is that it doesn’t allow the maximum
amount of concurrency. If a process is adding a record to one hash chain, another
process should be able to read a record on a different hash chain.

Fine-Grained Locking

We enhance coarse-grained locking to allow more concurrency and call this fine-grained
locking. We first require a reader or a writer to obtain a read lock or a write lock on the
hash chain for a given record. We allow any number of readers at one time on any hash
chain but only a single writer on a hash chain. Next, a writer needing to access the free
list (either db_delete or db_store) must obtain a write lock on the free list. Finally,
whenever it appends a new record to the end of either the index file or the data file,
db_store has to obtain awrite lock on that portion of the file.

We expect fine-grained locking to provide more concurrency than coarse-grained
locking. In Section 20.9, we’ll show some actual measurements. In Section 20.8, we
show the source code to our implementation of fine-grained locking and discuss the
details of implementing locking. (Coarse-grained locking is merely a simplification of
the locking that we show.)

In the source code, we call read, readv, write, and writev directly. We do not
use the standard 1/0 library. Although it is possible to use byte-range locking with the
standard I/O library, careful handling of buffering is required. We don’t want an
fgets, for example, to return data that was read into a standard 1/0O buffer 10 minutes
ago if the data was modified by another process 5 minutes ago.

Section 20.8 Source Code 719

20.7

20.8

Our discussion of concurrency is predicated on the simple needs of the database
library. Commercial systems often have additional requirements. See Chapter 16 of
Date {2004] for additional details on concurrency.

Building the Library

The database library consists of two files: a public C header file and a C source file. We
can build a static library using the commands

gce -I../include -Wall -c db.c
ar rsv libapue db.a db.o

Applications that want to link with libapue db.a will also need to link with
libapue. a, since we use some of our common functions in the database library.

If, on the other hand, we want to build a dynamic shared library version of the
database library, we can use the following commands:

gcc -I../include -Wall -fPIC -c db.c
gcc -shared -Wl, -soname, libapue db.so.l -o libapue _db.so.1 \
-L../lib -lapue -lc db.o

The resulting shared library, 1ibapue_db.soc.1, needs to be placed in a common
directory where the dynamic linker/loader can find it. Alternatively, we can place it in
a private directory and modify our LD _LIBRARY PATH environment variable to
include the private directory in the search path of the dynamic linker/loader.

The steps used to build shared libraries vary among platforms. Here, we have shown how to
do it on a Linux system with the GNU C compiler.

Source Code

We start with the apue_db.h header shown first. This header is included by the
library source code and all applications that call the library.

For the remainder of this text, we depart from the style of the previous examples in
several ways. First, because the source code example is longer than usual, we number
the lines. This makes it easier to link the discussion with the corresponding source
code. Second, we place the description of the source code immediately below the
source code on the same page.

This style was inspired by John Lions in his book documenting the UNIX Version 6 operating
system source code [Lions 1977, 1996]. It simplifies the task of studying large amounts of
source code.

Note that we do not bother to number blank lines. Although this departs from the
normal behavior of such tools as pr(1), we have nothing interesting to say about blank
lines.

720

A Database Library Chapter 20

1 #ifndef APUE DB H
2 #define APUE DB_H

3 typedef void * DBHANDLE;

4 DBHANDLE db open(const char *, int, ...);

5 void db_close (DBHANDLE) ;

6 char *db fetch (DBHANDLE, const char *);

7 int db_store (DBHANDLE, const char *, const char *, int);
8 int db_delete (DBHANDLE, const char *);

9 void db_rewind (DBHANDLE) ; ‘
10 char *db nextrec (DBHANDLE, char *);

11 /*

12 * Flags for db_store().

13 */

14 #define DB_INSERT 1 /* insert new record only */
15 #define DB_REPLACE 2 /* replace existing record */
16 #define DB_STORE 3 /* replace or insert */

17 /*

18 * Implementation limits.

19 */
20 #define IDXLEN MIN 6 /* key, sep, start, sep, length, \n */
21 #define IDXLEN MAX 1024 /* arbitrary */
22 #define DATLEN_ MIN 2 /* data byte, newline */
23 #define DATLEN_MAX 1024 /* arbitrary */

24 #endif /* _APUE_DB_H */

(1-3]

[4-10]

[11-24]

We use the APUE DB H symbol to ensure that the contents of the header file
are included only once. The DBHANDLE type represents an active reference to
the database and is used to isolate applications from the implementation
details of the database. Compare this technique with the way the standard
1/0 library exposes the FILE structure to applications.

Next, we declare the prototypes for the database library’s public functions.
Since this header is included by applications that want to use the library, we
don’t declare the prototypes for the library’s private functions here.

The legal flags that can be passed to the db_store function are defined next,
followed by fundamental limits of the implementation. These limits can be
changed, if desired, to support bigger databases.

The minimum index record length is specified by IDXLEN_MIN. This
represents a 1-byte key, a 1-byte separator, a 1-byte starting offset, another
1-byte separator, a 1-byte length, and a terminating newline character. (Recall
the format of an index record from Figure 20.2.) An index record will usually
be larger than IDXLEN_MIN bytes, but this is the bare minimum size.

Section 20.8

Source Code 721

The next file is db.c, the C source file for the library. For simplicity, we include all
functions in a single file. This has the advantage that we can hide private functions by
declaring them static.

1 #include "apue.h"

2 #include "apue_db.h"

3 #include <fcntl.h> /* open & db_open flags */

4 #include <stdarg.h>

5 #include <errno.h>

6 #include <sys/uio.h> /* struct iovec */

7 /*

8 * Internal index file constants.

9 * These are used to construct records in the

10 * index file and data file.

11 */

12 #define IDXLEN_SZ 4 /* index record length (ASCII chars) */
13 #define SEP ret /* separator char in index record */
14 #define SPACE r /* space character */

15 #define NEWLINE "\n’ /* newline character */

16 /*

17 * The following definitions are for hash chains and free

18 * list chain in the index file.

19 */r

20 #define PTR_SZ 6 /* size of ptr field in hash chain */
21 #define PTR_MAX 999999 /* max file offset = 10**PTR _SZ - 1 */
22 #define NHASH DEF 137 /* default hash table size */

23 #define FREE_OFF 0 /* free list offset in index file */
24 #define HASH_OFF PTR_SZ /* hash table offset in index file */

25 typedef unsigned long DBHASH; /* hash values *x/
26 typedef unsigned long COUNT; /* unsigned counter */

[1-6]

[7-26]

We include apue.h because we use some of the functions from our private
library. In turn, apue.h includes several standard header files, including
<stdio.h> and <unistd.h>. We include <stdarg.h> Dbecause the
db_open function uses the variable-argument functions declared by
<stdarg.h>.

The size of an index record is specified by IDXLEN_SZ. We use some
characters, such as colon and newline, as delimiters in the database. We use
the space character as “white out” when we delete a record.

Some of the values that we have defined as constants could also be made
variable, with some added complexity in the implementation. For example,
we set the size of the hash table to 137 entries. A better technique would be to
let the caller specify this as an argument to db_open, based on the expected
size of the database. We would then have to store this size at the beginning of
the index file.

722 A Database Library Chapter 20

27 /
28
29

*

* Library’s private representation of the database.

*/

30 typedef struct {

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 }

int idxfd; /* fd for index file */
int datfd; /* fd for data file */
char *idxbuf; /* malloc’ed buffer for index record */
char *datbuf; /* malloc’ed buffer for data record*/
char *name; /* name db was opened under */
off t idxoff; /* offset in index file of index record */
/* key is at (idxoff + PTR_SZ + IDXLEN_SZ) */
size t idxlen; /* length of index record */
/* excludes IDXLEN_SZ bytes at front of record */
/* includes newline at end of index record */
off t datoff; /* offset in data file of data record */
size_t datlen; /* length of data record */
/* includes newline at end */
off t ptrval; /* contents of chain ptr in index record */
off t ptroff; /* chain ptr offset pointing to this idx record */
off t chainoff; /* offset of hash chain for this index recoxrd */
off t hashoff; /* offset in index file of hash table */

DBHASH nhash; /* current hash table size */
COUNT cnt_delok; /* delete OK */
COUNT cnt_delerr; /* delete error */

COUNT cnt_fetchok; /* fetch OK */
COUNT cnt_fetcherr; /* fetch error */
COUNT c¢nt nextrec; /* nextrec */

COUNT cnt_storl; /* store: DB_INSERT, no empty, appended */
COUNT cnt_stor2; /* store: DB_INSERT, found empty, reused */
COUNT cnt_stor3; /* store: DB_REPLACE, diff len, appended */
COUNT cnt_stor4; /* store: DB_REPLACE, same len, overwrote */
COUNT cnt_storerr; /* store exror */

DB;

[27-48]

[49-59]

The DB structure is where we keep all the information for each open database.
The DBHANDLE value that is returned by db_open and used by all the other
functions is really just a pointer to one of these structures, but we hide that
from the callers.

Since we store pointers and lengths as ASCII in the database, we convert these
to numeric values and save them in the DB structure. We also save the hash
table size even though it is fixed, just in case we decide to enhance the library
to allow callers to specify the size when the database is created (see
Exercise 20.7).

The last ten fields in the DB structure count both successful and unsuccessful
operations. If we want to analyze the performance of our database, we can
write a function to return these statistics, but for now, we only maintain the
counters.

Section 20.8

Source Code 723

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

75
76
77
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93

/*
* Internal functions.
*/’
static DB * db_alloc(int);
static void _db_dodelete (DB *);
static int _db_find and_lock (DB *, const char *, int);
static int _db_findfree(DB *, int, int);
static void _db_free(DB *);

static DBHASH _db_hash(DB *, const char *);
static char * db readdat (DB *);

static off t _db_readidx (DB *, off t);
static off_t _db_readptr(DB *, off t);
static void _db_writedat (DB *, const char *, off t, int);
static void _db_writeidx (DB *, const char *, off t, int, off t);
static void _db_writeptr(DB *, off t, off t);
/*
* Open or create a database. Same arguments as open(2).
*/
DBHANDLE
db_open(const char *pathname, int oflag, ...)
{
DB *db;
int len, mode;
size t i;
char asciiptr[PTR_SZ + 1],

hash[(NHASH DEF + 1) * PTR_SZ + 2];
/* +2 for newline and null */
struct stat statbuff;

/¥
* Allocate a DB structure, and the buffers it needs.
*/

len = strlen(pathname) ;

if ((db = db_alloc(len)) == NULL)

err_dump ("db_open: _db alloc error for DB");

[60-74] We have chosen to name all the user-callable (public) functions starting with

db_ and all the internal (private) functions starting with _db_. The public
functions were declared in the library’s header file, apue_db.h. We declare
the internal functions as static so they are visible only to functions residing
in the same file (the file containing the library implementation).

[75-93] The db_open function has the same arguments as open(2). If the caller wants

to create the database files, the optional third argument specifies the file
permissions. The db_open function opens the index file and the data file,
initializing the index file, if necessary. The function starts by calling
_db_alloc to allocate and initialize a DB structure.

724

A Database Library Chapter 20

94 db->nhash = NHASH DEF;/* hash table size */

95 db->hashoff = HASH OFF; /* offset in index file of hash table */
96 strcpy (db->name, pathname) ;

97 strcat (db->name, ".idx");

98 if (oflag & O_CREAT) {

99 va_list ap;

100 va_start (ap, oflag);

101 mode = va_arg(ap, int); ™

102 va_end{ap) ;

103 /*

104 * Open index file and data file.

105 */

106 db->idxfd = open(db->name, oflag, mode) ;

107 strcpy (db->name + len, ".dat");

108 db->datfd = open(db->name, oflag, mode);

109 } else {

110 /*

111 * Open index file and data file.

112 */

113 db->idxfd = open(db->name, oflag):

114 strcpy (db->name + len, ".dat");

115 db->datfd = open(db->name, oflag);

116 }

117 if (db->idxfd < 0 || db->datfd < 0) {

118 _db_free(db) ;

119 return (NULL) ;

120 }

[94-97] We continue to initialize the DB structure. The pathname passed in by the
caller specifies the prefix of the database filenames. We append the suffix
. 1dx to create the name for the database index file.

[98-108] If the caller wants to create the database files, we use the variable argument
functions from <stdarg.h> to find the optional third argument. Then we
use open to create and open the index file and data file. Note that the
filename of the data file starts with the same prefix as the index file but has
.dat as a suffix instead. :

[109-116] If the caller doesn’t specify the O_CREAT flag, then we're opening existing
database files. In this case, we simply call open with two arguments.

[117-120] If we hit an error opening or creating either database file, we call_db_free

to clean up the DB structure and then return NULL to the caller. If one open
succeeded and one failed, _db_free will take care of closing the open file
descriptor, as we shall see shortly.

Section 20.8

Source Code 725

121 if ((oflag & (O_CREAT | O_TRUNC)) == (O CREAT | O _TRUNC)) {

122 /*

123 * I1f the database was created, we have to initialize

124 * it. Write lock the entire file so that we can stat

125 * it, check its size, and initialize it, atomically.

126 */

127 if (writew_lock(db->idxfd, 0, SEEK_SET, 0) < 0)

128 err_dump ("db_open: writew lock errox");

129 if (fstat(db->idxfd, &statbuff) < 0)

130 err_sys("db open: fstat error");

131 if (statbuff.st size == 0) {

132 /*

133 * We have to build a list of (NHASH DEF + 1) chain

134 * ptrs with a value of 0. The +1 is for the free

135 * list pointer that precedes the hash table.

136 */

137 sprintf (asciiptr, "%*d", PTR_SZ, 0);

[121-130] We encounter locking if the database is being created. Consider two
processes trying to create the same database at about the same time.
Assume that the first process calls fstat and is blocked by the kernel after
fstat returns. The second process calls db_open, finds that the length of
the index file is 0, and initializes the free list and hash chain. The second
process then writes one record to the database. At this point, the second
process is blocked, and the first process continues executing right after the
call to fstat. The first process finds the size of the index file to be 0 (since
fstat was called before the second process initialized the index file), so the
first process initializes the free list and hash chain, wiping out the record that
the second process stored in the database. The way to prevent this is to use
locking. We use the macros readw_lock, writew_lock, and un_lock
from Section 14.3.

[131-137] If the size of the index file is 0, we have just created it, so we need to

initialize the free list and hash chain pointers it contains. Note that we use
the format string $*d to convert a database pointer from an integer to an
ASCII string. (We'll use this type of format again in _db_writeidx and
_db_writeptr.) This format tells sprintf to take the PTR_SZ argument
and use it as the minimum field width for the next argument, which is 0 in
this instance (here we are initializing the pointers to 0, since we are creating
a new database). This has the effect of forcing the string created to be at least
PTR_SZ characters (padded on the left with spaces). In _db_writeidx and
_db_writeptr, we will pass a pointer value instead of zero, but we will
first verify that the pointer value isn’t greater than PTR_MAX, to guarantee
that every pointer string we write to the database occupies exactly PTR_S2
(6) characters.

726 A Database Library Chapter 20

138 hash{0] = 0;

139 for (i = 0; 1 < NHASH DEF + 1; i++)

140 strcat (hash, asciiptr);

141 strcat (hash, "\n");

142 i = strlen(hash);

143 if (write(db->idxfd, hash, i) != i)

144 err_dump("db_open: index file init write error");
145 }

146 if (un_lock(db->idxfd, 0, SEEK SET, 0) < 0)

147 err dump("db _open: un_lock error");

148 }

149 db_rewind (db) ;

150 return (db) ;

151 }

152 /*

153 * Allocate & initialize a DB structure and its buffers.
154 x/

155 static DB *

156 _db_alloc{int namelen)

157 {

158 DB *db;

159 /*

160 * Use calloc, to initialize the structure to zero.
161l */

162 if ((db = calloc(l, sizeof(DB))) == NULL)

163 err dump("_db_alloc: calloc error for DB");

164 db->idxfd = db->datfd = -1; /* descriptors */
165 /*

166 * Allocate room for the name.

167 * +5 for ".idx" or ".dat" plus null at end.

168 */

169 if ((db-»>name = malloc(namelen + 5)) == NULL)

170 err_dump("_db_alloc: malloc error for name");

[138-151] We continue to initialize the newly created database. We build the hash
table and write it to the index file. Then we unlock the index file, reset the
database file pointers, and return a pointer to the DB structure as the opaque
handle for the caller to use with the other database functions.

[152-164] The _db_alloc function is called by db_open to allocate storage for the DB
structure, an index buffer, and a data buffer. We use calloc to allocate
memory to hold the DB structure and ensure that it is initialized to all zeros.
Since this has the side effect of setting the database file descriptors to zero,
we need to reset them to -1 to indicate that they are not yet valid.

[165-170] We allocate space to hold the name of the database file. We use this buffer to
create both filenames by changing the suffix to refer to either the index file or
the data file, as we saw in db_open.

Section 20.8

Source Code 727

171 /*

172 * Allocate an index buffer and a data buffer.

173 * +2 for newline and null at end.

174 */

175 if ((db->idxbuf = malloc(IDXLEN MAX + 2)) == NULL)

176 err_dump("_db_alloc: malloc error for index buffer");
177 if ((db->datbuf = malloc (DATLEN MAX + 2)) == NULL)

178 err_dump("_db_alloc: malloc error for data buffer");
179 return(db) ;

180 }

181 /*

182 * Relinquish access to the database.

183 */

184 void

185 db_close (DBHANDLE h)

186 {

187 _db_free((DB *)h); /* closes fds, free buffers & struct */
188 }

189 /*

190 * Free up a DB structure, and all the malloc’ed buffers it
191 * may point to. Also close the file descriptors if still open.
192 */

193 static void
194 _db_free (DB *db)

if (db->idxfd >= 0)
close (db->idxfad) ;

if (db->datfd >= 0)
close (db->datfd) ;

195 {
196

197

198

199
[171-180]
[181-188]
[189-199]

We allocate space for buffers for the index and data files. The bulffer sizes are
defined in apue_db.h. An enhancement to the database library would be
to allow these buffers to expand as required. We could keep track of the size
of these two buffers and call realloc whenever we find we need a bigger
buffer. Finally, we return a pointer to the DB structure that we allocated.

The db_close function is a wrapper that casts a database handle to a DB
structure pointer, passing it to _db_free to release any resources and free
the DB structure.

The _db_free function is called by db_open if an error occurs while
opening the index file or data file and is also called by db_close when an
application is done using the database. If the file descriptor for the database
index file is valid, we close it. The same is done with the file descriptor for
the data file. (Recall that when we allocate a new DB structure in
_db_alloc, we initialize each file descriptor to —1. If we are unable to open
one of the database files, the corresponding file descriptor will still be set to
-1, and we will avoid trying to close it.)

728 A Database Library ' Chapter 20

200
201
202
203
204
205
206
207 }

208 /*
209 *
210 *

if (db->idxbuf != NULL)
free (db->idxbuf) ;

if (db->datbuf != NULL)
free (db->datbuf) ;

if (db->name != NULL)
free (db->name) ;
free(db) ;

Fetch a record. Return a pointer to the null-terminated data.

/

211 char *
212 db_fetch (DBHANDLE h, const char *key)

213 {

214 DB *db = h;

215 char *ptr;

216 if (_db_find_and_lock(db, key, 0) < 0) {

217 ptr = NULL; /* error, record not found */

218 db->cnt_fetcherr++;

219 } else {

220 ptr = _db readdat (db); /* return pointer to data */

221 db->cnt_fetchok++;

222 }

223 /*

224 * Unlock the hash chain that _db_find and_ lock locked.

225 */

226 if (un_lock(db->idxfd, db->chainoff, SEEK SET, 1) < 0)

227 err_dump("db_fetch: un_lock error");

228 return(ptrx) ;

229}

[200-207] Next, we free any dynamically-allocated buffers. We can safely pass a null
pointer to free, so we don’t need to check the value of each buffer pointer
beforehand, but we do so anyway because we consider it better style to free
only those objects that we allocated. (Not all deallocator functions are as
forgiving as free.) Finally, we free the memory backing the DB structure.

[208-218] The db_fetch function is used to read a record given its key. We first try to
find the record by calling _db_find_and_lock. If the record can’t be
found, we set the return value (ptr) to NULL and increment the count of
unsuccessful record searches. Because _db_find_and_lock returns with
the database index file locked, we can’t return until we unlock it.

[219-229] If the record is found, we call _db_readdat to read the corresponding data

record and increment the count of the successful record searches. Before
returning, we unlock the index file by calling un_lock. Then we return a
pointer to the record found (or NULL if the record wasn’t found).

Section 20.8

Source Code 729

230 /*

231 * Find the specified record. Called by db_delete, db_fetch,

232 * and db store. Returns with the hash chain locked.

233 * /

234 static int

235 _db find_and lock (DB *db, const char *key, int writelock)

236 {

237 off t offset, nextoffset;

238 /*

239 * Calculate the hash value for this key, then calculate the

240 * byte offset of corresponding chain ptr in hash table.

241 * This is where our search starts. First we calculate the

242 * offset in the hash table for this key.

243 */

244 db->chainoff = (_db_hash(db, key) * PTR_SZ) + db->hashoff;

245 db->ptroff = db->chainoff;

246 /*

247 * We lock the hash-chain here. The caller must unlock it

248 * when done. Note we lock and unlock only the first byte.

249 */

250 if (writelock) {

251 if (writew_lock(db->idxfd, db->chainoff, SEEK SET, 1) < 0)

252 err_dump(" db find and lock: writew_lock error");

253 } else {

254 if (readw_lock(db->idxfd, db->chainoff, SEEK SET, 1) < 0)

255 err_dump("_db_ find and_lock: readw_lock error");

256 }

257 /*

258 * Get the offset in the index file of first record

259 * on the hash chain (can be 0).

260 */

261 offset = _db readptr(db, db->ptroff);

[230-237] The _db_find and_lock function is used internally by the library to find
a record given its key. We set the writelock parameter to a nonzero value
if we want to acquire a write lock on the index file while we search for the
record. If we set writelock to zero, we read-lock the index file while we
search it.

[238-256] We prepare to traverse a hash chain in _db_find and lock. We convert
the key into a hash value, which we use to calculate the starting address of
the hash chain in the file (chainoff). We wait for the lock to be granted
before going through the hash chain. Note that we lock only the first byte in
the start of the hash chain. This increases concurrency by allowing multiple
processes to search different hash chains at the same time.

[257-261] We call _db_readptr to read the first pointer in the hash chain. If this

returns zero, the hash chain is empty.

736 A Database Library Chapter 20

262 while (offset != 0) {

263 nextoffset = _db _readidx(db, offset);

264 if (strcmp(db->idxbuf, key) == 0)

265 break; /* found a match */

266 db->ptroff = offset; /* offset of this (unequal) record */
267 offset = nextoffset; /* next one to compare */
268 }

269 /*

270 * offset == 0 on error (record not found).

271 */

272 return(offset == 0 ? -1 : 0);

273 }

274 /*

275 * Calculate the hash value for a key.

276 */

277 static DBHASH

278 _db_hash(DB *db, const char *key)

279 {

280 DBHASH hval = 0;

281 char c;

282 int i;

283 for (i = 1; (c = *key++) != 0; 1i++)

284 hval += ¢ * 1i; /* ascii char times its 1l-based index */
285 return(hval % db->nhash);

286 }

[262-268] In the while loop, we go through each index record on the hash chain,
comparing keys. We call _db_readidx to read each index record. It
populates the idxbuf field with the key of the current record. If
_db_readidx returns zero, we’ve reached the last entry in the chain.

[269-273] If offset is zero after the loop, we’'ve reached the end of a hash chain
without finding a matching key, so we return —1. Otherwise, we found a
match (and exited the loop with the break statement), so we return success
(0). In this case, the ptroff field contains the address of the previous index
record, datoff contains the address of the data record, and datlen
contains the size of the data record. As we make our way through the hash
chain, we save the previous index record that points to the current index
record. We'll use this when we delete a record, since we have to modify the
chain pointer of the previous record to delete the current record.

[274-286] _db_hash calculates the hash value for a given key. It multiplies each
ASCII character times its 1-based index and divides the result by the number
of hash table entries. The remainder from the division is the hash value for
this key. Recall that the number of hash table entries is 137, which is a prime
number. According to Knuth [1998], prime hashes generally provide good
distribution characteristics.

Section 20.8

Source Code 731

287 /*
288 *
289 *
290 *
291 *
292 st

Read a chain ptr field from anywhere in the index file:

the free list pointer, a hash table chain ptr, or an
index record chain ptr.

/

atic off t

293 _db_readptr (DB *db, off t offset)

294 {
295

296
297
298
299
300
301
302

}
303 /
304
305
306
307
308 *
309 *
310 st

* ok A ¥ *

char asciiptr [PTR SZ + 1];
if (lseek(db->idxfd, offset, SEEK_SET) == -1)
err_dump ("_db_readptr: lseek error to ptr field");
if (read(db->idxfd, asciiptr, PTR_SZ) != PTR_SZ)
err_dump ("_db readptr: read error of ptr field");
asciiptr [PTR_SZ} = 0; /* null terminate */

return(atol (asciiptr)) ;

Read the next index record. We start at the specified offset
in the index file. We read the index record into db->idxbuf
and replace the separators with null bytes. If all is OK we
set db->datoff and db->datlen to the offset and length of the
corresponding data record in the data file.
/
atic off t

311 _db_readidx (DB *db, off t offset)

312 {
313
314
315
316

ssize_t i;

char *ptrl, *ptr2;

char asciiptr ([PTR_SZ + 1], asciilen({IDXLEN SZ + 1};
struct iovec iovi[2];

[287-302]

[303-316]

_db_readptr reads any one of three different chain pointers: (a) the pointer
at the beginning of the index file that points to the first index record on the
free list, (b) the pointers in the hash table that point to the first index record
on each hash chain, and (c) the pointers that are stored at the beginning of
each index record (whether the index record is part of a hash chain or on the
free list). We convert the pointer from ASCII to a long integer before
returning it. No locking is done by this function; that is up to the caller.

The _db_readidx function is used to read the record at the specified offset
from the index file. On success, the function will return the offset of the next
record in the list. In this case, the function will populate several fields in the
DB structure: idxoff contains the offset of the current record in the index
file, ptrval contains the offset of the next index entry in the list, idxlen
contains the length of the current index record, idxbuf contains the actual
index record, datoff contains the offset of the record in the data file, and
datlen contains the length of the data record.

732

A Database Library Chapter 20

317 /*

318 * Position index file and record the offset. db_nextrec

319 * calls us with offset==0, meaning read from current offset.

320 * We still need to call lseek to record the current offset.

321 */

322 if ((db->idxoff = lseek(db->idxfd, offset,

323 offset == 0 ? SEEK CUR : SEEK SET)) == -1)

324 err_dump (" _db readidx: lseek error");

328 /*

326 * Read the ascii chain ptr and the ascii length at

327 * the front of the index record. This tells us the

328 * remaining size of the index record.

329 */

330 iov[0] .iov_base = asciiptr;

331 iov([0] .iov_len = PTR_SZ;

332 iov{l] .iov_base = asciilen;

333 iov({l] .iov_len = IDXLEN_SZ;

334 if ((i = readv(db->idxfd, &iov[0], 2)) != PTR SZ + IDXLEN_SZ) {

335 if (i == 0 && offset == 0)

336 return(-1); /* EOF for db nextrec */

337 err_dump ("_db_readidx: readv error of index record");

338 }

339 /*

340 * This is our return value; always >= 0.

341 */

342 asciiptr[PTR Sz] = 0; /* null terminate */

343 db->ptrval = atol(asciiptr); /* offset of next key in chain */

344 asciilen[IDXLEN_SZ] = 0; /* null terminate */

345 if ((db->idxlen = atoi(asciilen)) < IDXLEN_MIN ||

346 db->idxlen > IDXLEN MAX)

347 err_dump ("_db readidx: invalid length");

[317-324] We start by seeking to the index file offset provided by the caller. We record
the offset in the DB structure, so even if the caller wants to read the record at
the current file offset (by setting of fset to 0), we still need to call 1seek to
determine the current offset. Since an index record will never be stored at
offset 0 in the index file, we can safely overload the value of 0 to mean “read
from the current offset.”

[325-338] We call readv to read the two fixed-length- fields at the beginning of the
index record: the chain pointer to the next index record and the size of the
variable-length index record that follows.

[339-347] We convert the offset of the next record to an integer and store it in the

ptrval field (this will be used as the return value for this function). Then
we convert the length of the index record into an integer and save it in the
idxlen field.

Section 20.8

Source Code 733

348 /*

349 * Now read the actual index record. We read it into the key

350 * buffer that we malloced when we opened the database.

351 */

352 if ((i = read(db->idxfd, db->idxbuf, db->idxlen)) != db-sidxlen)

353 err_dump ("_db_readidx: read error of index record");

354 if (db->idxbuf [db->idxlen-1] != NEWLINE) /* sanity check */

355 err_dump ("_db_readidx: missing newline") ;

356 db->idxbuf [db->idxlen-1] = 0; /* replace newline with null */

357 /*

358 * Find the separators in the index record.

359 */

360 if ((ptrl = strchr(db->idxbuf, SEP)) == NULL)

361 err_dump ("_db readidx: missing first separator");

362 *ptrl++ = 0; /* replace SEP with null */

363 if ((ptr2 = strchr(ptrl, SEP)) == NULL)

364 err_dump("_db readidx: missing second separator");

365 *ptr2++ = 0; /* replace SEP with null */

366 if (strchr(ptr2, SEP) != NULL)

367 err_dump("_db_readidx: too many separators");

368 /*

369 * Get the starting offset and length of the data record.

370 */

371 if ((db->datoff = atol(ptrl)) < 0)

372 err dump ("_db_readidx: starting offset < 0");

373 if ((db->datlen = atol(ptr2)) <= 0 || db->datlen > DATLEN_ MAX)

374 err_dump("_db_readidx: invalid length");

3175 return (db->ptrval) ; /* return offset of next key in chain */

376 } '

[348-356] We read the variable-length index record into the idxbuf field in the DB
structure. The record should be terminated with a newline, which we
replace with a null byte. If the index file is corrupt, we terminate and drop
core by calling err_dump.

[357-367] We separate the index record into three fields: the key, the offset of the
corresponding data record, and the length of the data record. The strchr
function finds the first occurrence of the specified character in the given
string. Here we look for the character that separates fields in the record
(SEP, which we define to be a colon).

[368-376] We convert the data record offset and length into integers and store them in

the DB structure. Then we return the offset of the next record in the hash
chain. Note that we do not read the data record. That is left to the caller. In
db_fetch, for example, we don't read the data record until
_db_find and_lock has read the index record that matches the key that
we're looking for. ’

734

A Database Library Chapter 20

377 /*

378 * Read the current data record into the data buffer.

379 * Return a pointer to the null-terminated data buffer.

380 */

381 static char *

382 _db_readdat (DB *db)

383 {

384 if (lseek(db->datfd, db->datoff, SEEK SET) == -1)

385 err dump("_db_readdat: lseek error");

386 if (read(db->datfd, db->datbuf, db->datlen) != db->datlen)
387 err dump("_db_readdat: read error");

388 if (db->datbuf [db->datlen-1] != NEWLINE) /* sanity check */
389 err_dump("_db_readdat: missing newline");

390 db->datbuf [db->datlen-1] = 0; /* replace newline with null */
391 return (db->datbuf) ; /* return pointer to data record */
392 }

393 /*

394 * Delete the specified record.

395 */

396 int

397 db_delete (DBHANDLE h, const char *key)

398 {

399 DB *db = h;

400 int rc = 0; /* assume record will be found */
401 if (_db find and lock(db, key, 1) == 0) {

402 _db_dodelete (db) ;

403 db->cnt_delok++;

404 } else {

405 rc = -1; /* not found */

406 db->cnt_delerr++;

407 }

408 if (un_lock(db->idxfd, db->chainoff, SEEK SET, 1) < 0)

409 err_dump ("db_delete: un_lock error");

410 return(rc) ;

411 }

[377-392] The _db readdat function populates the datbuf field in the DB structure

[393-411]

with the contents of the data record, expecting that the datoff and datlen
fields have been properly initialized already.

The db_delete function is used to delete a record given its key. We use
_db_find_and_lock to determine whether the record exists in the
database. If it does, we call _db_dodelete to do the work needed to delete
the record. The third argument to _db_find and_lock controls whether
the chain is read-locked or write-locked. Here we are requesting a write
lock, since we will potentially change the list. Since _db_find_and_lock
returns with the lock still held, we need to unlock it, regardless of whether
the record was found.

Section 20.8

Source Code 735

412 /*
413 *

Delete the current record specified by the DB structure.

414 * This function is called by db_delete and db store, after

415 * the record has been located by _db_find_and lock.

416 */

417 static void

418 _db_dodelete (DB *db)

419 {

420 int i;

421 char *ptr;

422 off t freeptr, saveptr;

423 /*

424 * Set data buffer and key to all blanks.

425 */

426 for (ptr = db->datbuf, i = 0; i < db->datlen - 1; i++)

427 *ptr++ = SPACE;

428 *ptr = 0; /* null terminate for _db writedat */

429 ptr = db->idxbuf;

430 while (*ptr)

431 *ptr++ = SPACE;

432 /*

433 * We have to lock the free list.

434 */

435 if (writew_lock(db->idxfd, FREE_OFF, SEEK SET, 1) < 0)

436 err_dump ("_db dodelete: writew_lock error");

437 /*

438 * Write the data record with all blanks.

439 */

440 _db_writedat (db, db->datbuf, db->datoff, SEEK_SET);

[412-431] The db_dodelete function does all the work necessary to delete a record
from the database. (This function is also called by db_store.) Most of the
function just updates two linked lists: the free list and the hash chain for this
key. When a record is deleted, we set its key and data record to blanks. This
fact is used by db_nextrec, which we’ll examine later in this section.

[432-440] We call writew_lock to write-lock the free list. This is to prevent two

processes that are deleting records at the same time, on two different hash
chains, from interfering with each other. Since we’ll add the deleted record
to the free list, which changes the free-list pointer, only one process at a time
can be doing this.

We write the all-blank data record by calling _db_writedat. Note that
there is no need for _db_writedat to lock the data file in this case. Since
db_delete has write-locked the hash chain for this record, we know that
no other process is reading or writing this particular data record.

736

A Database Library Chapter 20

441 /*

442 * Read the free list pointer. Its value becomes the

443 * chain ptr field of the deleted index record. This means

444 * the deleted record becomes the head of the free list.

445 */

446 freeptr = _db readptr(db, FREE_OFF);

447 /*

448 * Save the contents of index record chain ptr,

449 * pefore it’s rewritten by _db_writeidx.

450 */

451 saveptr = db->ptrval;

452 /*

453 * Rewrite the index record. This also rewrites the length

454 * of the index record, the data offset, and the data length,

455 * none of which has changed, but that’s OK.

456 */

457 _db_writeidx(db, db->idxbuf, db->idxoff, SEEK SET, freeptr);

458 /*

459 * Write the new free list pointer.

460 */

461 _db writeptr(db, FREE OFF, db->idxoff);

462 /*

463 * Rewrite the chain ptr that pointed to this record being

464 * deleted. Recall that db find and_lock sets db->ptroff to

465 * point to this chain ptr. We set this chain ptr to the

466 * contents of the deleted record’s chain ptr, saveptr.

467 */

468 _db_writeptr(db, db->ptroff, saveptr);

469 if (un_lock(db->idxfd, FREE OFF, SEEK SET, 1) < 0)

470 err dump (" _db_dodelete: un_lock error");

471 }

[441-461] We read the free-list pointer and then update the index record so that its next
record pointer is set to the first record on the free list. (If the free list was
empty, this new chain pointer is 0.) We have already cleared the key. Then
we update the free-list pointer with the offset of the index record we are
deleting. This means that the free list is handled on a last-in, first-out basis;
that is, deleted records are added to the front of the free list (although we
remove entries from the free list on a first-fit basis).

We don’t have a separate free list for each file. When we add a deleted index

record to the free list, the index record still points to the deleted data record.

There are better ways to do this, in exchange for added complexity.
[462-471] We update the previous record in the hash chain to point to the record after

the one we are deleting, thus removing the deleted record from the hash
chain. Finally, we unlock the free list.

Section 20.8

Source Code 737

472 /*

473 * Write a data record. Called by db dodelete (to write

474 * the record with blanks) and db_store.

475 */

476 static void

477 _db writedat (DB *db, const char *data, off t offset, int whence)

478 {

479 struct iovec iov([2];

480 static char newline = NEWLINE;

481 /*

482 * If we're appending, we have to lock before doing the lseek

483 * and write to make the two an atomic operation. If we're

484 * overwriting an existing record, we don’t have to lock.

485 */

486 if (whence == SEEK END) /* we’re appending, lock entire file */

487 if (writew_lock(db->datfd, 0, SEEK SET, 0) < 0)

488 err_dump (" _db writedat: writew lock error");

489 if ((db->datoff = lseek(db->datfd, offset, whence)) == -1)

490 err_dump ("_db writedat: lseek error");

491 db->datlen = strlen(data) + 1; /* datlen includes newline */

492 iov[0] .iov_base = (char *) data;

493 iov[0] .iov_len = db->datlen - 1;

494 iov[1l] .iov_base = &newline;

495 iov{l].iov_len = 1;

496 if (writev(db->datfd, &iov([0], 2) != db->datlen)

497 err_dump ("_db_writedat: writev error of data record");

498 if (whence == SEEK_END)

499 if (un_lock(db->datfd, 0, SEEK SET, 0) < 0)

500 err_dump ("_db writedat: un_lock error");

501 }

[472-491] We call _db_writedat to write a data record. When we delete a record, we
use _db_writedat to overwrite the record with blanks; db writedat
doesn’t need to lock the data file, because db_delete has write-locked the
hash chain for this record. Thus, no other process could be reading or
writing this particular data record. When we cover db_store later in this
section, we'll encounter the case in which _db_writedat is appending to
the data file and has to lock it.

We seek to the location where we want to write the data record. The amount
to write is the record size plus 1 byte for the terminating newline we add.

[492-501] We set up the iovec array and call writev to write the data record and

newline. We can’t assume that the caller’s buffer has room at the end for us
to append the newline, so we write the newline from a separate buffer. If we
are appending a record to the file, we release the lock we acquired earlier.

738 A Database Library Chapter 20

502 /*

503 * Write an index record. _db writedat is called before

504 * this function to set the datoff and datlen fields in the

505 * DB structure, which we need to write the index record.

506 */

507 static void

508 _db writeidx (DB *db, const char *key,

509 off t offset, int whence, off t ptrval)

510 {

511 struct iovec iov[2];

512 char asciiptrlen[PTR_SZ + IDXLEN_SZ +1];

513 int len;

514 char *fmt;

515 if ((db-sptrval = ptrval) < 0 || ptrval > PTR MAX)

516 err_quit ("_db writeidx: invalid ptr: %d", ptrval);

517 if (sizeof(off t) == sizeof(long long))

518 fmt = "%s%c%1ld%c%d\n";

519 else

520 fmt = "%s%c%ld%c%d\n";

521 sprintf (db->idxbuf, fmt, key, SEP, db->datoff, SEP, db->datlen);
522 if ((len = strlen(db->idxbuf)) < IDXLEN MIN || len > IDXLEN MAX)
523 err dump("_db writeidx: invalid length");

524 sprintf (asciiptrlen, "%*1d%*d", PTR_SZ, ptrval, IDXLEN SZ, len);
525 /*

526 * If we’re appending, we have to lock before doing the lseek
527 * and write to make the two an atomic operation. If we’'re
528 * overwriting an existing record, we don’t have to lock.

529 * /

530 if (whence == SEEK _END) /* we're appending */

531 if (writew_lock(db->idxfd, ((db->nhash+1)*PTR SZ)+1,

532 SEEK_SET, 0) < 0)

533 err_dump ("_db_writeidx: writew_lock error");

[502-524] The _db_writeidx function is called to write an index record. After
validating the next pointer in the chain, we create the index record and store
the second half of it in idxbuf. We need the size of this portion of the index
record to create the first half of the index record, which we store in the local
variable asciiptrlen.

Note that we select the format string passed to sprintf based on the size of
the of £_t data type. Even a 32-bit system can provide 64-bit file offsets, so
we can’t make any assumptions about the size of the of £_t data type.

[525-533] As with _db_writedat, this function deals with locking only when a new
index record is being appended to the index file. When db_dodelete
calls this function, we’re rewriting an existing index record. In this case, the
caller has write-locked the hash chain, so no additional locking is required.

Section 20.8

Source Code 739

534
535
536
537
538

539
540
541
542
543
544

545
546
547
548
549

550
551
552
553
554
555
556
557

558
559
560

561
562
563
564
565

/*
* Position the index file and record the offset.
*/
if ((db->idxoff = lseek(db->idxfd, offset, whence)) == -1)
err dump (" db writeidx: lseek error");
iov[0] .iov_base = asciiptrlen;
iov[0] .iov_len = PTR_SZ + IDXLEN_SZ;
iov[1l] .iov_base = db->idxbuf;
iov[1l] .iov_len = len;
if (writev(db->idxfd, &iov([0], 2} != PTR_SZ + IDXLEN SZ + len)
err dump("_db_writeidx: writev error of index record");
if (whence == SEEK_END)
if (un lock(db->idxfd, ((db->nhash+1)*PTR_SZ)+1,
SEEK_SET, 0) < 0)
err_dump (" db writeidx: un_lock errxor"};

/*

* Write a chain ptr field somewhere in the index file:
* the free list, the hash table, or in an index record.

*/

static void
_db_writeptr (DB *db, off_t offset, off t ptrval)

char asciiptr[PTR_SZ + 1];

if (ptrval < 0 || ptrval > PTR_MAX)
err quit(" db writeptr: invalid ptr: %d", ptrval);
sprintf (asciiptr, "%*1d", PTR_SZ, ptrval);

if (lseek(db->idxfd, offset, SEEK _SET) == -1)
err dump("_db writeptr: lseek error to ptr field");
if (write(db->idxfd, asciiptr, PTR_SZ) != PTR_SZ)

err dump("_db writeptr: write error of ptr field");

[534-549] We seek to the location where we want to write the index record and save

this offset in the idxoff field of the DB structure. Since we built the index
record in two separate buffers, we use writev to store it in the index file. If
we were appending to the file, we release the lock we "acquired before
seeking. This makes the seek and the write an atomic operation from the
perspective of concurrently running processes appending new records to the
same database.

[550-565] _db writeptr is used to write a chain pointer to the index file. We

validate that the chain pointer is within bounds, then convert it to an ASCII
string. We seek to the specified offset in the index file and write the pointer.

740 A Database Library Chapter 20

566
567
568
569
570
571
572
573
574
575

576
577
578
579
580
581
582
583
584

585
586
587
588
589
590
591
592
593
594
595
596
597
598

/*
* Store a record in the database. Return 0 if OK, 1 if record
* exists and DB_INSERT specified, -1 on error.
*/
int
db_store (DBHANDLE h, const char *key, const char *data, int flag)
DB *db = h;
int rc, keylen, datlen;
off t ptrval;

if (flag != DB_INSERT && flag != DB_REPLACE &&
flag != DB_STORE) {
errno = EINVAL;
return(-1) ;
}
keylen = strlen(key);
datlen = strlen(data) + 1; /* +1 for newline at end */
if (datlen < DATLEN_MIN || datlen > DATLEN MAX)
err_dump ("db_store: invalid data length");

/*
* _db_find_and_lock calculates which hash table this new record
* goes into (db->chainoff), regardless of whether it already
* exists or not. The following calls to _db writeptr change the
* hash table entry for this chain to point to the new record.
* The new record is added to the front of the hash chain.
*/
if (_db_find_and lock(db, key, 1) < 0) { /* record not found */
if (flag == DB REPLACE) {
rc = -1;
db->cnt_storerr++;
errno = ENOENT; /* error, record does not exist */
goto doreturn;

[566-584] We use db_store to add a record to the database. We first validate the flag

value we are passed. Then we make sure that the length of the data record is
valid. If it isnt, we drop core and exit. This is OK for an example, but if we
were building a production-quality library, we'd return an error status
instead, which would give the application a chance to recover.

[585-598] We call _db_find_and_lock to see if the record already exists. It is OK if

the record doesn't exist and either DB_INSERT or DB_STORE is specified, or
if the record already exists and either DB_REPLACE or DB_STORE is
specified. If we're replacing an existing record, that implies that the keys are
identical but that the data records probably differ. Note that the final
argument to _db_find_and_ lock specifies that the hash chain must be
write-locked, as we will probably be modifying this hash chain.

Section 20.8

Source Code 741

599 /*

600 * _db_find and_lock locked the hash chain for us; read

601 * the chain ptr to the first index record on hash chain.

602 */

603 ptrval = db_readptr(db, db->chainoff);

604 if (_db_findfree(db, keylen, datlen) < 0) {

605 /*

606 * Can’t find an empty record big enough. Append the

607 * new record to the ends of the index and data files.

608 */

609 _db writedat (db, data, 0, SEEK_END) ;

610 _db_writeidx(db, key, 0, SEEK _END, ptrval);

611 /*

612 * db->idxoff was set by db writeidx. The new

613 * record goes to the front of the hash chain.

614 */

615 _db_writeptr(db, db-schainoff, db->idxoff) ;

616 db->cnt_storl++;

617 } else {

618 /*

619 * Reuse an empty record. _db findfree removed it from

620 * the free list and set both db->datoff and db->idxoff.

621 * Reused record goes to the front of the hash chain.

622 */

623 _db_writedat (db, data, db->datoff, SEEK_SET) ;

624 _db_writeidx(db, key, db->idxoff, SEEK SET, ptrval);

625 _db_writeptr(db, db->chainoff, db->idxoff) ;

626 db->cnt_stor2++;

627 }

[599-603] After we call _db_find and lock, the code divides into four cases. In the
first two, no record was found, so we are adding a new record. We read the
offset of the first entry on the hash list.

[604-616] Case 1: we call _db_findfree to search the free list for a deleted record
with the same size key and same size data. If no such record is found, we
have to append the new record to the ends of the index and data files. We
call _db_writedat to write the data part, db writeidx to write the
index part, and _db_writeptr to place the new record on the front of the
hash chain. We increment a count (cnt_storl) of the number of times we
executed this case to allow us to characterize the behavior of the database.

[617-627] Case 2: _db_findfree found an empty record with the correct sizes and

removed it from the free list (we’ll see the implementation of
_db_findfree shortly). We write the data and index portions of the new
record and add the record to the front of the hash chain as we did in case 1.
The cnt_stor2 field counts how many times we’ve executed this case.

742 A Database Library Chapter 20

628 } else { /* record found */

629 if (flag == DB_INSERT) {

630 rc = 1; /* error, record already in db */

631 db->cnt_storerr++;

632 goto doreturn;

633 }

634 /*

635 * We are replacing an existing record. We know the new

636 * key equals the existing key, but we need to check if

637 * the data records are the same size.

638 x/

639 if (datlen != db->datlen) {

640 _db_dodelete (db) ; /* delete the existing record */

641 /*

642 * Reread the chain ptr in the hash table

643 * (it may change with the deletion).

644 */

645 ptrval = _db readptr(db, db->chainoff) ;

646 /*

647 * Append new index and data records to end of files.

648 x/

649 _db writedat (db, data, 0, SEEK_END);

650 _db_writeidx(db, key, 0, SEEK_END, ptrval) ;

651 /*

652 * New record goes to the front of the hash chain.

653 */

654 _db_writeptr(db, db->chainoff, db->idxoff);

655 db->cnt_stor3++;

656 } else {

[628-633] Now we reach the two cases in which a record with the same key already
exists in the database. If the caller isn’t replacing the record, we set the
return code to indicate that arecord exists, increment the count of the
number of store errors, and jump to the end of the function, where we
handle the common return logic.

[634—656] Case 3: an existing record is being replaced, and the length of the new data

record differs from the length of the existing one. We call _db_dodelete to
delete the existing record. Recall that this places the deleted record at the
head of the free list. Then we append the new record to the ends of the data
and index files by calling _db_writedat and _db_writeidx. (There are
other ways to handle this case. We could try to find a deleted record that has
the correct data size.) The new record is added to the front of the hash chain
by calling _db_writeptr. The cnt_stor3 counter in the DB structure
records the number of times we’ve executed this case.

Section 20.8

Source Code 743

657 /*

658 * Same size data, just replace data record.

659 */

660 _db_writedat (db, data, db->datoff, SEEK SET);

661 db->cnt_stor4++;

662 }

663 }

664 rc = 0; /* OK */

665 doreturn: /* unlock hash chain locked by _db_find and lock */

666 if (un_lock(db->idxfd, db->chainoff, SEEK_SET, 1) < 0)

667 err_dump ("db_store: un_lock error");

668 return(rc) ;

669 }

670 /*

671 * Try to find a free index record and accompanying data record

672 * of the correct sizes. We're only called by db store.

673 */

674 static int

675 _db_findfree (DB *db, int keylen, int datlen)

676 {

677 int rc;

678 off t offset, nextoffset, saveoffset;

679 /*

680 * Lock the free list.

681 */

682 if (writew_lock (db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)

683 err_dump ("_db_findfree: writew_lock error");

684 /*

685 * Read the free list pointer.

686 */

687 saveoffset = FREE_OFF;

688 offset = _db_readptr(db, saveoffset);

[657-663] Case 4: An existing record is being replaced, and the length of the new data
record equals the length of the existing data record. This is the easiest case;
we simply rewrite the data record and increment the counter (cnt_stor4)
for this case.

[664—-669] In the normal case, we set the return code to indicate success and fall

~ through tg the common return logic. We unlock the hash chain that was
locked as a result of calling _db_find_and_lock and return to the caller.

[670-688] The _db_findfree function tries to find a free index record and associated

data record of the specified sizes. We need to write-lock the free list to avoid
interfering with any other processes using the free list. After locking the free
list, we get the pointer address at the head of the list.

744 A Database Library Chapter 20

689 while (offset != 0) {

690 nextoffset = _db readidx(db, offset);

691 if (strlen(db->idxbuf) == keylen && db->datlen == datlen)
692 break; /* found a match */

693 saveoffset = offset;

694 offset = nextoffset;

695 }

696 if (offset == 0) {

697 re = -1; /* no match found */

698 } else {

699 /*

700 * Found a free record with matching sizes.

701 * The index record was read in by _db_readidx above,
702 * which sets db->ptrval. Also, saveoffset points to
703 * the chain ptr that pointed to this empty record on
704 * the free list. We set this chain ptr to db->ptrval,
705 * which removes the empty record from the free list.
706 * /

707 _db_writeptr(db, saveoffset, db->ptrval);

708 rc = 0;

709 /*

710 * Notice also that _db_readidx set both db->idxoff
711 * and db->datoff. This is used by the caller, db_store,
712 * to write the new index record and data record.

713 */

714 }

715 /*

716 * Unlock the free list.

717 */

718 if (un_lock(db->idxfd, FREE_OFF, SEEK SET, 1) < 0)

719 err_dump("_db_findfree: un_lock error");

720 return(rc).;

721}

[689-695] The while loop in _db_findfree goes through the free list, looking for a
record with matching key and data sizes. In this simple implementation, we
reuse a deleted record only if the key length and data length equal the
lengths for the new record being inserted. There are a variety of better ways
to reuse this deleted space, in exchange for added complexity.

[696-714] If we can’t find an available record of the requested key and data sizes, we
set the return code to indicate failure. Otherwise, we write the previous
record’s chain pointer to point to the next chain pointer value of the record
we have found. This removes the record from the free list.

[715-721] Once we are done with the free list, we release the write lock. Then we
return the status to the caller.

Section 20.8 Source Code 745

722 /*

723 * Rewind the index file for db_nextrec.

724 * Automatically called by db_open.

725 * Must be called before first db_nextrec.

726 */

727 void

728 db_rewind (DBHANDLE h)

729 {

730 DB *db = h;

731 off t offset;

732 offset = (db->nhash + 1) * PTR_SZ; /* +1 for free list ptr */
733 /* :

734 * We're just setting the file offset for this process

735 * to the start of the index records; no need to lock.

736 * +1 below for newline at end of hash table.

737 */

738 if ((db->idxoff = lseek(db->idxfd, offset+l, SEEK_SET)) == -1)
739 err_dump ("db_rewind: lseek error");

740 }

741 /*

742 * Return the next sequential record.

743 * We just step our way through the index file, ignoring deleted
744 * records. db_rewind must be called before this function is
745 * called the first time.

746 * /

747 char *
748 db_nextrec (DBHANDLE h, char *key)

749 {

750 DB *db = h;
751 char c;

752 char *ptr;

[722-740] The db_rewind function is used to reset the database to “the beginning;”
we set the file offset for the index file to point to the first record in the index
file (immediately following the hash table). (Recall the structure of the index
file from Figure 20.2.)

[741-752] The db_nextrec function returns the next record in the database. The
return value is a pointer to the data buffer. If the caller provides a non-null
value for the key parameter, the corresponding key is copied to this address.
The caller is responsible for allocating a buffer big enough to store the key.
A buffer whose size is IDXLEN_MAX bytes is large enough to hold any key.

Records are returned sequentially, in the order that they happen to be stored
in the database file. Thus, the records are not sorted by key value. Also,
because we do not follow the hash chains, we can come across records that
have been deleted, but we will not return these to the caller.

746 A Database Library Chapter 20

753 /*

754 * We read lock the free list so that we don’t read
755 * a record in the middle of its being deleted.

756 *x/

757 if (readw lock (db->idxfd, FREE_OFF, SEEK_SET, 1) < 0)
758 err dump ("db_nextrec: readw_lock error™"); ' '
759 do {

760 /*

761 * Read next sequential index record.

762 */

763 if (_db_readidx(db, 0) < 0) {

764 ptr = NULL; /* end of index file, EOF */
765 goto doreturn;

766 }

767 /*

768 * Check if key is all blank (empty record).

768 */

770 ptr = db->idxbuf;

771 while ((c = *ptr++) != 0 && ¢ == SPACE)

772 ; /* skip until null byte or nonblank */
773 } while (¢ == 0); /* loop until a nonblank key is found */
774 if (key != NULL)

775 strcpy (key, db->idxbuf); /* return key */

776 ptr = _db_readdat(db); /* return pointer to data buffer */
777 db->cnt_nextrec++;

778 doreturn:

779 if (un_lock(db->idxfd, FREE_OFF, SEEK SET, 1) < 0)
780 err_dump ("db_nextrec: un_lock error");

781 return(ptr) ;

782 |}

[753-758] We first need to read-lock the free list so that no other processes can remove
a record while we are reading it.

[759-773] We call _db_readidx to read the next record. We pass in an offset of 0 to
: tell _db_readidx to continue reading from the current offset. Since we are
reading the index file sequentially, we can come across records that have
been deleted. We want to return only valid records, so we skip any record
whose key is all spaces (recall that _db_dodelete clears a key by setting it

to all spaces).

[774-782] When we find a valid key, we copy it to the caller’s buffer if one was
supplied. Then we read the data record and set the return value to point to
the internal buffer containing the data record. We increment a statistics
counter, unlock the free list, and return the pointer to the data record.

Section 20.9 Performance 747

20.9

The normal use of db_rewind and db_nextrec is in a loop of the form

db_rewind (db) ;
while ((ptr = db_nextrec(db, key)) != NULL) ({
/* process record */

As we warned earlier, there is no order to the returned records; they are not in key
order.

If the database is being modified while db_nextrec is called from a loop, the
records returned by db_nextrec are simply a snapshot of a changing database at some
point in time. db_nextrec always returns a “correct” record when it is called; that is,
it won't return a record that was deleted. But it is possible for a record returned by
db_nextrec to be deleted immediately after db_nextrec returns. Similarly, if a
deleted record is reused right after db_nextrec skips over the deleted record, we
won't see that new record unless we rewind the database and go through it again. If it’s
important to obtain an accurate “frozen” snapshot of the database using db_nextrec,
there must be no insertions or deletions going on at the same time.

Look at the locking used by db_nextrec. We're not going through any hash chain,
and we can’t determine the hash chain that a record belongs on. Therefore, it is possible
for an index record to be in the process of being deleted when db_nextrec is reading
the record. To prevent this, db_nextrec read-locks the free list, thereby avoiding any
interaction with _db_dodelete and _db_findfree.

Before we conclude our study of the db.c source file, we need to describe the
locking when new index records or data records are appended to the end of the file. In
cases 1 and 3, db_store calls both _db_writeidx and _db_writedat with a third
argument of 0 and a fourth argument of SEEK_END. This fourth argument is the flag to
these two functions, indicating that the new record is being appended to the file. The
technique used by _db_writeidx is to write-lock the index file from the end of the
hash chain to the end of file. This won't interfere with any other readers or writers of
the database (since they will lock a hash chain), but it does prevent other callers of
db_store from trying to append at the same time. The technique used by
_db_writedat is to write-lock the entire data file. Again, this won’t interfere with
other readers or writers of the database (since they don’t even try to lock the data file),
but it does prevent other callers of db_store from trying to append to the data file at
the same time. (See Exercise 20.3.) '

Performance

To test the database library and to obtain some timing measurements of the database
access patterns of typical applications, a test program was written. This program takes
two command-line arguments: the number of children to create and the number of
database records (nrec) for each child to write to the database. The program then creates
an empty database (by calling db_open), forks the number of child processes, and
waits for all the children to terminate. Each child performs the following steps.

748

A Database Library Chapter 20

Write nrec records to the database.
2. Read the nrec records back by key value.
3. Perform the following loop nrec x 5 times.
a. Read a random record.
b. Every 37 times through the loop, delete a random record.

c. Every 11 times through the loop, insert a new record and read the record
back.

d. Every 17 times through the loop, replace a random record with a new
record. Every other one of these replacements is a record with the same size
data, and the alternate is a record with a longer data portion.

4. Delete all the records that this child wrote. Every time a record is deleted, ten
random records are looked up.

The number of operations performed on the database is counted by the cnt_xxx
variables in the DB structure, which were incremented in the functions. The number of
operations differs from one child to the next, since the random-number generator used
to select records is initialized in each child to the child’s process ID. A typical count of
the operations performed in each child, when nrec is 500, is shown in Figure 20.6.

Operation Count
db_store, DB_INSERT, no empty record, appended 678
db_store, DB_INSERT, empty record reused 164
db_store, DB_REPLACE, different data length, appended 97
db_store, DB_REPLACE, equal data length 109
db_store, record not found 19
db_fetch, record found 8,114
db_fetch, record not found 732
db_delete, record found 842
db_delete, record not found 110

Figure 20.6 Typical count of operations performed by each child when nrec is 500

We performed about ten times more fetches than stores or deletions, which is probably
typical of many database applications.

Each child is doing these operations (fetching, storing, and deleting) only with the
records that the child wrote. The concurrency controls are being exercised because all
the children are operating on the same database (albeit different records in the same
database). The total number of records in the database increases in proportion to the
number of children. (With one child, nrec records are originally written to the database.
With two children, nrec X 2 records are originally written, and so on.)

To test the concurrency provided by coarse-grained locking versus fine-grained
locking and to compare the three types of locking (no locking, advisory locking, and
mandatory locking), we ran three versions of the test program. The first version used
the source code shown in Section 20.8, which we’ve called fine-grained locking. The

Section 20.9

Performance

749

second version changed the locking calls to implement coarse-grained locking, as
described in Section 20.6. The third version had all locking calls removed, so we could
measure the overhead involved in locking. We can run the first and second versions
(fine-grained locking and coarse-grained locking) using either advisory or mandatory
locking, by changing the permission bits on the database files. (In all the tests reported
in this section, we measured the times for mandatory locking using only the

implementation of fine-grained locking.)

All the timing tests in this section were done on a SPARC system running Solaris 9.

Single-Process Results

Figure 20.7 shows the results when only a single child process ran, with an nrec of 500,

1,000, and 2,000.
Advisory locking Mandatory locking
No locking

Coarse-grained locking Fine-grained locking Fine-grained locking
nrec || User Sys | Clock {| User Sys | Clock || User Sys | Clock || User Sys | Clock
500 || 0.42 0.89 1.31 0.42 117 159 || 041 1.04 145 || 046 1.49 195
1,000 | 151 3.89 5.41 1.64 4.13 5.78 1.63 4.12 5.76 173 6.34 8.07
2,000 || 391 10.06 | 1398 || 4.09 1030 | 1439 || 4.03 | 10.63 | 1466 || 4.47 1621 | 20.70

Figure 20.7 Single child, varying nrec, different locking techniques

The last 12 columns give the corresponding times in seconds. In all cases, the user CPU
time plus the system CPU time approximately equals the clock time. This set of tests
was CPU-limited and not disk-limited.

The six columns under “Advisory locking” are almost equal for each row. This
makes sense because for a single process, there is no difference between coarse-grained

locking and fine-grained locking.

Comparing no locking versus advisory locking, we see that adding the locking calls
adds between 2 percent and 31 percent to the system CPU time. Even though the locks
are never used (since only a single process is running), the system call overhead in the
calls to fcnt1 adds time. Also note that the user CPU time is about the same for all
four versions of locking. Since the user code is almost equivalent (except for the
number of calls to £cnt1), this makes sense.

The final point to note from Figure 20.7 is that mandatory locking adds between 43
percent and 54 percent to the system CPU time, compared to advisory locking. Since
the number of locking calls is the same for advisory fine-grained locking and
mandatory fine-grained locking, the additional system call overhead must be in the
reads and writes.

The final test was to try the no-locking program with multiple children. The results,
as expected, were random errors. Normally, records that were added to the database
couldn’t be found, and the test program aborted. Different errors occurred every time
the test program was run. This illustrates a classic race condition: multiple processes
updating the same file without using any form of locking.

750 A Database Library Chapter 20

Multiple-Process Results

The next set of measurements looks mainly at the differences between coarse-grained
locking and fine-grained locking. As we said earlier, intuitively, we expect fine-grained
locking to provide additional concurrency, since there is less time that portions of the
database are locked from other processes. Figure 20.8 shows the results for an nrec of
500, varying the number of children from 1 to 12.

Advisory locking Mandatory locking
Coarse-grained locking || Fine-grained locking A Fine-grained locking A
#Procl| User | Sys | Clock || User | Sys | Clock | Clock || User | Sys | Clock |Percent

1 0.41 1.00 142 0.41 1.05 147 0.05 047 1.40 187 | 33
2 1.10 2.81 3.92 111 2.80 3.92 0.00 115 4.06 522 45
3 217 527 7.44 2.19 5.18 7.37 | 0.07 2.31 7.67 999 | 48
4 3.36 855 | 1191 3.26 8.67 | 11.94 0.03 351 | 1269 | 1620 46
5 472 | 13.08 | 17.80 499 | 1264 | 1764 | -0.16 491 | 1921 | 2414 52
6
7
8

6.45 | 1796 | 2442 683 | 1729 | 2414 | -0.28 703 | 2659 | 3366 | 54
8.46 3.12 | 31.62 8.67 | 22.96 | 31.65 0.03 925 | 3547 | 4474 54
10.83 | 29.68 | 40.55 || 11.00 | 2939 | 40.41 | -0.14 || 11.67 | 4590 | 57.63 | 56
9 || 13.35 | 36.81 | 50.23 || 1343 | 36.28 | 49.76 | —047 || 1445 | 58.02| 7249 | 60
10 || 16.35 | 45.28 | 61.66 || 16.09 | 44.10 | 60.23 | -1.43 || 1743 | 7090 | 8837 61
11 || 1897 | 5424 | 7324 || 1913 | 51.70 | 70.87 | -2.37 || 20.62 | 84.98 | 105.69 | 64
12 || 2292 | 63.54 | 86.51 || 22.94 | 61.28 | 8429 | -2.22 || 24.41 | 101.68 | 126.20 | 66

Figure 20.8 Comparison of various locking techniques, nrec = 500

All times are in seconds and are the total for the parent and all its children. There are
many items to consider from this data.

The eighth column, labeled “A clock,” is the difference in seconds between the clock
times from advisory coarse-grained locking to advisory fine-grained locking. This is the
measurement of how much concurrency we obtain by going from coarse-grained
locking to fine-grained locking. On the system used for these tests, coarse-grained
locking is roughly the same until we have more than seven processes. Even after seven
processes, the decrease in clock time using fine-grained locking isn’t that great (less than
3 percent), which makes us wonder whether the additional code required to implement
fine-grained locking is worth the effort.

We would like the clock time to decrease from coarse-grained to fine-grained
locking, as it eventually does, but we expect the system time to remain higher for
fine-grained locking, for any number of processes. The reason we expect this is that
with fine-grained locking, we are issuing more fcntl calls than with coarse-grained
locking. If we total the number of fcnt1 calls in Figure 20.6 for coarse-grained locking
and fine-grained locking, we have an average of 21,730 for coarse-grained locking and
25,292 for fine-grained locking. (To get these numbers, realize that each operation in
Figure 20.6 requires two calls to fcntl for coarse-grained locking and that the first
three calls to db_store along with record deletion [record found] each require four
calls to fcntl for fine-grained locking.) We expect this increase of 16 percent in the
number of calls to fcntl to result in an increased system time for fine-grained locking.

Section 20.9 Performance 751

Therefore, the slight decrease in system time for fine-grained locking, when the number
of processes exceeds seven, is puzzling.

The reason for the decrease is that with coarse-grained locking, we hold locks for
longer periods of time, thus increasing the likelihood that other processes will block on
a lock. With fine-grained locking, the locking is done over shorter intervals, so there is
less chance that processes will block. If we analyze the system behavior running 12
database processes, we will see that there is three times as much process switching with
coarse-grained locking as with fine-grained locking. This means that processes block on
locks less often with fine-grained locking.

The final column, labeled “A percent,” is the percentage increase in the system CPU
time from advisory fine-grained locking to mandatory fine-grained locking. These
percentages verify what we saw in Figure 20.7, that mandatory locking adds
significantly (between 33 percent and 66 percent) to the system time.

Since the user code for all these tests is almost identical (there are some additional
fentl calls for both advisory fine-grained and mandatory fine-grained locking), we
expect the user CPU times to be the same across any row.

The values in the first row of Figure 20.8 are similar to those for an nrec of 500 in
Figure 20.7. This corresponds to our expectation.

Figure 20.9 is a graph of the data from Figure 20.8 for advisory fine-grained locking.
We plot the clock time as the number of processes goes from 1 to 12. We also plot the
user CPU time divided by the number of processes and the system CPU time divided
by the number of processes.

90 —
80 — |8
70 —
60 — | 6
sys CPU/#proc,
50 —
clock time user CPU/#proc
(seconds)
(seconds)
40 — L 4
30 — system CPU/#proc
20— L 2
10— user CPU/#proc
0 - 0
T 1T T 1T 1T T"17T 1T T T
1 2 3 4 5 6 7 8 9 10 1 12

#processes

Figure 20.9 Values from Figure 20.8 for advisory fine-grained locking

752

A Database Library Chapter 20

20.10

Note that both CPU times, divided by the number of processes, are linear but that the
plot of the clock time is nonlinear. The probable reason is the added amount of CPU
time used by the operating system to switch between processes as the number of
processes increases. This operating system overhead would show up as an increased
clock time, but shouldn't affect the CPU times of the individual processes.

The reason the user CPU time increases with the number of processes is that there
are more records in the database. Each hash chain is getting longer, so it takes the
_db find and_lock function longer, on the average, to find a record.

Summary

This chapter has taken a long look at the design and implementation of a database
library. Although we’ve kept the library small and simple for presentation purposes, it
contains the record locking required to allow concurrent access by multiple processes.

We've also looked at the performance of this library with various numbers of
processes using no locking, advisory locking (fine-grained and coarse-grained), and
mandatory locking. We saw that advisory locking adds less than 10 percent to the clock
time over no locking and that mandatory locking adds another 33 percent to 66 percent
over advisory locking.

Exercises

20.1 The locking in _db_dodelete is somewhat conservative. For example, we could allow
more concurrency by not write-locking the free list until we really need to; that is, the call to
writew_lock could be moved between the calls to _db_writedat and _db_readptr.
What happens if we do this?

20.2 If db_nextrec did not read-lock the free list and a record that it was reading was also in
the process of being deleted, describe how db_nextrec could return the correct key but an
* all-blank (hence incorrect) data record. (Hint: look at _db_dodelete.)

20.3 At the end of Section 20.8, we described the locking performed by _db_writeidx and

_db_writedat. We said that this locking didn't interfere with other readers and writers
except those making calls to db_store. Is this true if mandatory locking is being used?

20.4 How would you integrate the £ sync function into this database library?

20.5 Indb_store, we write the data record before the index record. What happens if you do it
in the opposite order?

20.6 Create a new database and write some number of records to the database. Write a program
that calls db_nextrec to read each record in the database, and call _db_hash to calculate
the hash value for each record. Print a histogram of the number of records on each hash
chain. Is the hashing function in _db_hash adequate?

20.7 Modify the database functions so that the number of hash chains in the index file can be
specified when the database is created.

20.8 Compare the performance of the database functions when the database is (a) on the same
host as the test program and (b) on a different host accessed via NFS. Does the record
locking provided by the database library still work?

21.1

21.2

21

Communicating with a
Network Printer

Introduction

We now develop a program that can communicate with a network printer. These
printers are connected to multiple computers via Ethernet and often support PostScript
files as well as plaintext files. Applications generally use the Internet Printing Protocol
(IPP) to communicate with these printers, although some support alternate
communication protocols.

We are about to describe two programs: a print spooler daemon that sends jobs to a
printer and a command to submit print jobs to the spooler daemon. Since the print
spooler has to do multiple things (communicate with clients submitting jobs,
communicate with the printer, read files, scan directories, etc.), this gives us a chance to
use many of the functions from earlier chapters. For example, we use threads (Chapters
11 and 12) to simplify the design of the print spooler and sockets (Chapter 16) to
communicate between the program used to schedule a file to be printed and the print
spooler, and also between the print spooler and the network printer.

The Internet Printing Protocol

IPP specifies the communication rules for building network-based printing systems. By
embedding an IPP server inside a printer with an Ethernet card, the printer can service
requests from many computer systems. These computer systems need not be located on
the same physical network, however. IPP is built on top of standard Internet protocols,
so any computer that can create a TCP/IP connection to the printer can submit a print
job.

753

754

Communicating with a Network Printer Chapter 21

Specifically, IPP is built on top of HTTP, the Hypertext Transfer Protocol
(Section 21.3). HTTP, in turn, is built on top of TCP/IP. The structure of an IPP message
is shown in Figure 21.1.

Ethernet P TCP HTTP PP data to be
header header header header header printed

Figure 21.1 Structure of an IPP message

IPP is a request-response protocol. A client sends a request message to a server,
and the server answers with a response message. The IPP header contains a field that
indicates the requested operation. Operations are defined to submit print jobs, cancel
print jobs, get job attributes, get printer attributes, pause and restart the printer, place a
job on hold, and release a held job.

Figure 21.2 shows the structure of an IPP message header. The first 2 bytes are the
IPP version number. For protocol version 1.1, each byte has a value of 1. For a protocol
request, the next 2 bytes contain a value identifying the requested operation. For a
protocol response, these 2 bytes contain a status code instead.

version number (2 bytes)
_o;:e;a;i(;n—lD— (;e&u_es_t);s;a;u; c?o&e_(r;sgo_ns_e)‘ (2 bytes)
______________________ i
request ID (4 bytes)
attributes (0-n bytes)
——————— end-of-attributes t;g“ T (1 byte)
data (0-n bytes)

Figure 21.2 Structure of an IPP header

The next 4 bytes contain an integer identifying the request. Optional attributes
follow this, terminated by an end-of-attributes tag. Any data that might be associated
with the request follows immediately after the end-of-attributes tag.

In the header, integers are stored as signed, two’s-complement, binary values in
big-endian byte order (i.e., network byte order). Attributes are stored in groups. Each
group starts with a single byte identifying the group. Within each group, an attribute is
generally represented as a 1-byte tag, followed by a 2-byte name length, followed by the
name of the attribute, followed by a 2-byte value length, and finally the value itself. The
value can be encoded as a string, a binary integer, or a more complex structure, such as
a date/timestamp.

Section 21.2 The Internet Printing Protocol 755

Figure 21.3 shows how the attributes-charset attribute would be encoded
with a value of utf-8.

_______ Arbutetag =07 | byt
size of attribute name = 18 (2 bytes)
| ramesaveribuces chasset | (8bytes)
| seotambuewaiess | @byes
________ v—alwue_;u_t;—;__—-—__q (5 bytes)

Figure 21.3 Sample IPP attribute encoding

Depending on the operation requested, some attributes are required to be provided
in the request message, whereas others are optional. For example, Figure 21.4 shows
the attributes defined for a print-job request.

Attribute Status Description

attributes-charset required | The character set used by attributes of type text or name

attributes-natural-language [required | The natural language used by attributes of type text or name

printer-uri required | The printer’s Universal Resource Identifier

requesting-user-name optional | Name of user submitting job (used for authentication, if enabled)

job-name optional | Name of job used to distinguish between multiple jobs

ipp-attribute-fidelity optional |If true, tells printer to reject job if all attributes can’t be met;
otherwise, printer does its best to print the job

document -name optional | The name of the document (suitable for printing in a banner, for
example)

document-format optional | The format of the document (plaintext, PostScript, etc.)

document-natural-language |optional |The natural language of the document

compression optional | The algorithm used to compress the document data

job-k-octets optional | Size of the document in 1,024-octet units

job-impressions optional | Number of impressions (images imposed on a page) submitted
in this job

job-media-sheets optional | Number of sheets printed by this job

Figure 21.4 Attributes of print-job request

The IPP header contains a mixture of text and binary data. Attribute names are
stored as text, but sizes are stored as binary integers. This complicates the process of
building and parsing the header, since we need to worry about such things as network
byte order and whether our host processor can address an integer on an arbitrary byte
boundary. A better alternative would have been to design the header to contain text
only. This simplifies processing at the cost of slightly larger protocol messages.

756 Communicating with a Network Printer Chapter 21

IPP is specified in a series of documents (Requests For Comments, or RFCs)
available at http://www.pwg.org/ipp. The main documents are listed in
Figure 215, although many other documents are available to further specify
administrative procedures, job attributes, and the like.

RFC Title

2567 | Design Goals for an Internet Printing Protocol

2568 | Rationale for the Structure of the Model and Protocol for the Internet Printing Protocol
2911 | Internet Printing Protocol/1.1: Model and Semantics

2910 | Internet Printing Protocol/1.1: Encoding and Transport

3196 | Internet Printing Protocol/1.1: Implementor’s Guide

Figure 21.5 Primary IPP RFCs

21.3 The Hypertext Transfer Protocol

Version 1.1 of HTTP is specified in RFC 2616. HTTP is also a request-response protocol.
A request message contains a start line, followed by header lines, a blank line, and an
optional entity body. The entity body contains the IPP header and data in this case.

HTTP headers are ASCII, with each line terminated by a carriage return (\r) and a
line feed (\n). The start line consists of a method that indicates what operation the client
is requesting, a Uniform Resource Locator (URL) that describes the server and protocol,
and a string indicating the HTTP version. The only method used by IPP is POST, which
is used to send data to a server.

The header lines specify attributes, such as the format and length of the entity body.
A header line consists of an attribute name followed by a colon, optional white space,
and the attribute value, and is terminated by a carriage return and a line feed. For
example, to specify that the entity body contains an IPP message, we include the header
line

Céntent-Type: application/ipp

The start line in an HTTP response message contains a version string followed by a
numeric status code and a status message, terminated by a carriage return and a line
feed. The remainder of the HTTP response message has the same format as the request
message: headers followed by a blank line and an optional entity body.

The following is a sample HTTP header for a print request for the author’s printer:

POST /phaser860/ipp HTTP/1.1"M

Content-Length: 21931"M

Content-Type: application/ipp™M

Host: phaser860:ipp™M

“M
The ~M at the end of the each line is the carriage return that precedes the line feed. The
line feed doesn’t show up as a printable character. Note that the last line of the header
is empty, except for the carriage return and line feed.

Section 21.4 Printer Spooling 757

21.4 Printer Spooling

The programs that we develop in this chapter form the basis of a simple printer spooler.
A simple user command sends a file to the printer spooler; the spooler saves it to disk,
queues the request, and ultimately sends the file to the printer.

All UNIX Systems provide at least one print spooling system. FreeBSD ships LPD,
the BSD print spooling system (see 1pd(8) and Chapter 13 of Stevens [1990]). Linux and
Mac OS X include CUPS, the Common UNIX Printing System (see cupsd(8)). Solaris
ships with the standard System V printer spooler (see 1p(1) and 1psched(iM)). In this
chapter, our interest is not in these spooling systems per se, but in communicating with
a network printer. We need to develop a spooling system to solve the problem of
multiuser access to a single resource (the printer).

We use a simple command that reads a file and sends it to the printer spooler
daemon. The command has one option to force the file to be treated as plaintext (the
default assumes that the file is PostScript). We call this command print.

In our printer spooler daemon, printd, we use multiple threads to divide up the
work that the daemon needs to accomplish.

* One thread listens on a socket for new print requests arriving from clients
running the print command.

* A separate thread is spawned for each client to copy the file to be printed to a
spooling area.

* One thread communicates with the printer, sending it queued jobs one at a time.

* One thread handles signals.

Figure 21.6 shows how these components fit together.

ot printd
copmmand printer .
spooler queue of files to be printed
File 1 File 2 File 3
f;,lfirt\f config file
/
printer

Figure 21.6 Printer spooling components

The print configuration file is /etc/printer.conf. It identifies the host name of
the server running the printer spooling daemon and the host name of the network
printer. The spooling daemon is identified by a line starting with the printserver
keyword, followed by white space and the host name of the server. The printer is

758

. Communicating with a Network Printer Chapter 21

identified by a line starting with the printer keyword, followed by white space and
the host name of the printer.
A sample printer configuration file might contain the following lines:

printserver blade
printer phaser860

where blade is the host name of the computer system running the printer spooling
daemon, and phaser860 is the host name of the network printer.

Security

21.5

Programs that run with superuser privileges have the potential to open a computer
system up to attack. Such programs usually aren’t more vulnerable than any other
program, but when compromised can lead to attackers obtaining full access to your
system.

The printer spooling daemon in this chapter starts out with superuser privileges in
this example to be able to bind a socket to a privileged TCP port number. To make the
daemon less vulnerable to attack, we can

* Design the daemon to conform to the principles of least privilege (Section 8.11).
After we obtain a socket bound to a privileged port address, we can change the
user and group IDs of the daemon to something other that root (lp, for
example). All the files and directories used to store queued print jobs should be
owned by this nonprivileged user. This way, the daemon, if compromised, will
provide the attacker with access only to the printing subsystem. This is still a
concern, but it is far less serious than an attacker getting full access to your
system.

¢ Audit the daemon’s source code for all known potential vulnerabilities, such as
buffer overruns.

* Log unexpected or suspicious behavior so that an administrator can take note
and investigate further.

Source Code

The source code for this chapter comprises five files, not including some of the common
library routines we’ve used in earlier chapters:

ipp.h Header file containing IPP definitions

print.h Header containing common constants, data structure definitions, and
utility routine declarations

util.c Utility routines used by the two programs
print.c The C source file for the command used to print a file

printd.c The C source file for the printer spooling daemon

We will study each file in the order listed.

Section 21.5 Source Code 759

We start with the ipp . h header file.

1 #ifndef _IPP _H

2 #define _IPP H

3 /*

4 * Defines parts of the IPP protocol between the scheduler
) * and the printer. Based on RF(C2911 and RFC2910.

6 */

7 /*

8 * Status code classes.

9 */
10 #define STATCLASS OK(x) ((x) >= 0x0000 && (x) <= O0x00ff)
11 #define STATCLASS_ INFO (x) ((x) >= 0x0100 && (x) <= 0x01ff)
12 #define STATCLASS_REDIR (x) ((x) >= 0x0200 && (x) <= 0x02ff)

13 #define STATCLASS_CLIERR(x) ((x) >= 0x0400 && (x) <= Ox04ff)
14 #define STATCLASS_SRVERR(x) ((x) >= 0x0500 && (x) <= O0x05ff)

15 /*

16 * Status codes.

17 */

.18 #define STAT OK 0x0000 /* success */

19 #define STAT OK ATTRIGN 0x0001 /* OK; some attrs ignored */
20 #define STAT OK ATTRCON 0x0002 /* OK; some attrs conflicted */

21 #define STAT_CLI_BADREQ 0x0400 /* invalid client request */

22 #define STAT CLI_FORBID 0x0401 /* request is forbidden */

23 #define STAT CLI_NOAUTH 0x0402 /* authentication required */

24 #define STAT CLI_NOPERM 0x0403 /* client not authorized */

25 #define STAT CLI_NOTPOS 0x0404 /* request not possible */

26 #define STAT CLI_TIMOUT 0x0405 /* client too slow */

27 #define STAT CLI_NOTFND 0x0406 /* no object found for URI */

28 #define STAT CLI_OBJGONE 0x0407 /* object no longer available */
29 #define STAT CLI_TOOBIG 0x0408 /* requested entity too big */
30 #define STAT_CLI_TOOLNG 0x0409 /* attribute value too. large */
31 #define STAT CLI_BADFMT 0x040a /* unsupported doc format */

32 #define STAT CLI_NOTSUP 0x040b /* attributes not supported */
33 #define STAT CLI_NOSCHM 0x040c /* URI scheme not supported */
34 #define STAT_ CLI_NOCHAR 0x040d /* charset not supported */

35 #define STAT_CLI_ATTRCON 0x040e /* attributes conflicted */

36 #define STAT_CLI_NOCOMP 0x040f /* compression not supported */
37 #define STAT CLI_COMPERR 0x0410 /* data can’'t be decompressed */
38 #define STAT CLI_FMTERR 0x0411 /* document format error */

39 #define STAT CLI_ACCERR 0x0412 /* error accessing data */

[1-14] We start the ipp.h header with the standard #ifdef to prevent errors when it
is included twice in the same file. Then we define the classes of IPP status
codes (see Section 13 in RFC 2911).

[15-39] We define specific status codes based on RFC 2911. We don'’t use these codes
in the program shown here; their use is left as an exercise (See Exercise 21.1).

760

Communicating with a Network Printer

Chapter 21

40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76

#define STAT SRV _INTERN 0x0500
#define STAT SRV _NOTSUP 0x0501
#define STAT_ SRV_UNAVAIL 0x0502
#define STAT_ SRV_BADVER 0x0503
#define STAT SRV DEVERR 0x0504
#define STAT SRV_TMPERR 0x0505
#define STAT_SRV_REJECT 0x0506
#define STAT_SRV_TOOBUSY 0x0507
#define STAT_ SRV_CANCEL 0x0508
#define STAT SRV_NOMULTI 0x0509
/*

* Operation IDs

*/
#define OP_PRINT_ JOB 0x02
#define OP_PRINT URI 0x03
#define OP_VALIDATE_ JOB 0x04
#define OP_CREATE_JOB 0x05
#define OP_SEND DOC 0x06
#define OP_SEND URI 0x07
#define OP_CANCEL_JOB 0x08
#define OP_GET_JOB_ATTR 0x09
#define OP_GET_JOBS 0x0a
#define OP_GET_PRINTER ATTR 0x0b
#define OP_HOLD_JOB 0x0c
#define OP_RELEASE JOB 0x0d
#define OP_RESTART JOB 0x0e
#define OP_PAUSE_PRINTER 0x10
#define OP_RESUME_PRINTER 0x11
#define OP_PURGE_JOBS 0x12
/*

* Attribute Tags.

*/
#define TAG_OPERATION_ATTR 0x01
#define TAG_JOB ATTR 0x02
#define TAG_END OF ATTR 0x03
#define TAG_PRINTER_ATTR 0x04
#define TAG_UNSUPP_ATTR 0x05

unexpected internal error */
operation not supported */
service unavailable */
version not supported */
device error */

temporary error */

server not accepting jobs */
server too busy */

job has been canceled */
multi-doc jobs unsupported */

operation attributes tag */
job attributes tag */

end of attributes tag */
printer attributes tag */
unsupported attributes tag */

[40-49] We continue to define status codes. The ones in the range 0x500 to 0x5£f £ are
server error codes. All codes are described in Sections 13.1.1 through 13.1.5 in

RFC 2911.

[50-68] We define the various operation IDs next. There is one ID for each task defined
by IPP (see Section 4.4.15 in RFC 2911). In our example, we will use only the

print-job operation.

[69-76] The attribute tags delimit the attribute groups in the IPP request and response
messages. The tag values are defined in Section 3.5.1 of RFC 2910.

Section 21.5

Source Code

761

77 /*
78 *
79 *

80 #define
81 #define
82 #define
83 #define
84 #define
85 #define
86 #define
87 #define
88 #define
89 #define
90 #define
91 #define
92 #define
93 #define
94 #define
95 #define

96 #d

97 #define
98 #define
99 #define

Value Tags.

/

TAG_UNSUPPORTED
TAG_UNKNOWN
TAG_NONE
TAG_INTEGER
TAG_BOOLEAN
TAG_ENUM
TAG_OCTSTR
TAG_DATETIME
TAG_RESOLUTION
TAG_INTRANGE
TAG_TEXTWLANG
TAG_NAMEWLANG
TAG_TEXTWOLANG
TAG_NAMEWOLANG
TAG_KEYWORD
TAG_URI
TAG_URISCHEME
TAG_CHARSET
TAG_NATULANG
TAG_MIMETYPE

efine

0x10
0x12
0x13
0x21
0x22
0x23
0x30
0x31
0x32
0x33
0x35
0x36
0x41
0x42
0x44
0x45
0x46
0x47
0x48
0x49

unsupported value */
unknown value */

no value */

integer */

boolean */

enumeration */
octetString */
dateTime */

resolution */

rangeOf Integer */
textWithLanguage */
nameWithLanguage */
textWithoutLanguage */
nameWithoutLanguage */
keyword */

URI */

uriScheme */

charset */
naturallLanguage */
mimeMediaType */

100 struct ipp hdr {

101 int8_t major_version; /* always 1 */

102 int8_t minor_version; /* always 1 */

103 union {

104 intlé_t op; /* operation ID */

105 intlé_t st; /* status */

106 } ou;

107 int32_t request_id; /* request ID */

108 char attr_group{1i]; /* start of optional attributes group */

109 /* optional data follows */

110 }i

111 #define operation u.op

112 #define status u.st

113 #endif /* _IPP_H */

[77-99] The value tags indicate the format of individual attributes and parameters.
They are defined in Section 3.5.2 of RFC 2910.

[100-113] We define the structure of an IPP header. Request messages start with the

same header as response messages, except that the operation ID in the
request is replaced by a status code in the response.

We end the header file with a #endif to match the #ifdef at the start of

the file.

Communicating with a Network Printer Chapter 21

The next file is the print . h header.

1 #ifndef _PRINT H

2 #define PRINT H

3 /*

4 * Print server header file.

5 */

6 #include <sys/socket.h>

7 #include <arpa/inet.h>

8 #if defined(BSD) || defined(MACOS)
9 #include <netinet/in.h>

10 #endif

11 #include <netdb.h>
12 #include <errno.h>

13 #define CONFIG_FILE "/etc/printer.conf"
14 #define SPOOLDIR "/var/spool/printer"
15 #define JOBFILE "jobno"

16 #define DATADIR "data"

17 #define REQDIR "regs"

18 #define FILENMSZ 64

19 #define FILEPERM (S_IRUSR|S_IWUSR)
20 #define USERNM MAX 64

21 #define JOBNM_MAX 256

22 #define MSGLEN._MAX 512

23 #ifndef HOST NAME_MAX
24 #define HOST NAME MAX 256

25 #endif

26 #define IPP_PORT 631

27 #tdefine QLEN 10

28 #define IBUFSZ 512 /* IPP header buffer size */

29 #define HBUFSZ 512 /* HTTP header buffer size */

30 #define IOBUFSZ 8192 /* data buffer size */

[1-12] We include all header files that an application might need if it included this

[13-17]

[18-30]

header. This makes it easy for applications to include print.h without
having to track down all the header dependencies.

We define the files and directories for the implementation. Copies of the files
to be printed will be stored in the directory /var/spool/printer/data;
control information for each request will be stored in the directory
/var/spool/printer/reqgs. The file containing the next job number is
/var/spool/printer/jobno.

Next, we define limits and constants. FILEPERM is the permissions used when
creating copies of files submitted to be printed. The permissions are restrictive
because we don’t want ordinary users to be able to read one another’s files
while they are waiting to be printed. IPP is defined to use port 631. The QLEN
is the backlog parameter we pass to 1isten (see Section 16.4 for details).

Section 21.5

Source Code

’

763

31
32
33

34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50

51
52
53
54

55
56
57
58
59
60
61
62

63

#ifndef ETIME
#define ETIME ETIMEDOUT
#endif

extern int getaddrlist (const char
struct addrinfo **);

*, const char *,

extern char *get_printserver(void) ;
extern struct addrinfo *get printaddr (void);

extern ssize_t tread(int, void *,

extern ssize_t treadn(int, void *,

size_t, unsigned int);
size_t, unsigned int);

extern int connect_retry(int, const struct sockaddr *, socklen_t);

extern int initserver(int, struct

/*

sockaddr *, socklen_t, int);

* Structure describing a print request.

*/
struct printreq {
long size; /*
long flags; /*
char usernm[USERNM_MAX] ; /*
char jobnm[JOBNM_ MAX] ; /*
}i
/*
* Request flags.
*/
#define PR_TEXT 0x01 /*
/*

* The response from the spooling
*/

struct printresp {

long retcode; /*
long jobid; /*
char msg[MSGLEN_MAX] ; /*

}i

#endif /* _PRINT H */

size in bytes */
see below */
user’s name */
job’s name */

treat file as plain text */

daemon to the print command.

O=success, !O=error code */
job ID */
error message */

[31-33] Some platforms don’t define the error ETIME, so we define it to an alternate
error code that makes sense for these systems.

[34-41]

[42-63]

Next, we declare all the public routines contained in util.c (we'll look at

these next). Note that the connect_retry function, from Figure 16.9, and the
initserver function, from Figure 16.20, are not included in util.c.

The printreq and printresp structures define the protocol between the

print command and the printer spooling daemon. The print command sends
the printreq structure defining the user name, job name, and file size to the
printer spooling daemon. The spooling daemon responds with a printresp
structure consisting of a return code, a job ID, and an error message if the

request failed.

764 Communicating with a Network Printer Chapter 21

The next file we will look at is util. c, the file containing utility routines.

B W N

(200

8

9
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32

#include "apue.h"
#include "print.h"
#include <ctype.h>
#include <sys/select.h>

#define MAXCFGLINE 512
#define MAXKWLEN 16
#define MAXFMTLEN 16

* Get the address list for the given host and service and

* return through ailistpp. Returns 0 on success Or an error
* code on failure. Note that we do not set errno if we

* encounter an error.

*

* LOCKING: none.

int
getaddrlist (const char *host, const char *service,
struct addrinfo **ailistpp)

int err;
struct addrinfo hint;

hint.ai_flags = AI_CANONNAME;
hint.ai_family = AF_INET;
hint.ai_socktype = SOCK_STREAM;

hint.ai_protocol = 0

hint.ai_addrlen = 0;

hint.ai_canonname = NULL;

hint.ai_addr = NULL;

hint.ai_next = NULL;

err = getaddrinfo(host, service, &hint, ailistpp);
return(err) ;

’

(1-7]

We first define the limits needed by the functions in this file. MAXCFGLINE is
the maximum size of a line in the printer configuration file, MAXKWLEN is the
maximum size of a keyword in the configuration file, and MAXFMTLEN is the
maximum size of the format string we pass to sscanf.

[8-32] The first function is getaddrlist. It is a wrapper for getaddrinfo

(Section 16.3.3), since we always call getaddrinfo with the same hint
structure. Note that we need no mutex locking in this function. The LOCKING
comment at the beginning of each function is intended only for documenting
multithreaded locking. This comment lists the assumptions, if any, that are
made regarding the locking, tells which locks the function might acquire or
release, and tells which locks must be held to call the function.

Section 21.5

Source Code 765

33 /
34
35
36
37
38
39 s
40 s
41 {
42
43
44
45
46

a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63 }

*

* Given a keyword, scan the configuration file flor a match
* and return the string value corresponding to the keyword.
*

* LOCKING: none.

*/

'

tatic char *
can_configfile (char *keyword)
int n, match;
FILE *fp;
char keybuf [MAXKWLEN] , pattern[MAXFMTLEN] ;
char line [MAXCFGLINE] ;
static char valbuf [MAXCFGLINE] ;
if ((fp = fopen (CONFIG_FILE, "r")) == NULL)

log_sys("can’'t open %s", CONFIG_FILE) ;
sprintf (pattern, "%%%ds %%%ds", MAXKWLEN-1, MAXCFGLINE-1);
match = 0;

while (fgets(line, MAXCFGLINE, fp) != NULL) {
n = sscanf (line, pattern, keybuf, valbuf);
if (n == 2 && strcmp(keyword, keybuf) == 0) {
match = 1;
break;
}
}
fclose (fp) ;
if (match != 0)
return(valbuf) ;
else

return (NULL) ;

[33-46]

[47-63]

The scan_configfile function searches through the printer configuration
file for the specified keyword.

We open the configuration file for reading and build the format string
corresponding to the search pattern. The notation %$%%ds builds a format
specifier that limits the string size so we don’t overrun the buffers used to store
the strings on the stack. We read the file one line at a time and scan for two
strings separated by white space; if we find them, we compare th: first string
with the keyword. If we find a match or we reach the end of the file, the loop
ends and we close the file. If the keyword matches, we return a pointer to the
buffer containing the string after the keyword; otherwise, we return NULL.

The string returned is stored in a static buffer (valbuf), which can be
overwritten on successive calls. Thus, scan_configfile can’t be called by a
multithreaded application unless we take care to avoid calling it from multiple
threads at the same time.

766 ~ Communicating with a Network Printer Chapter 21

64 /*

65 * Return the host name running the print server or NULL on error.
66 *

67 * LOCKING: none.

68 */

69 char *
70 get_printserver (void)

71 {

72 return(scan_configfile ("printserver"));

73}

74 /*

75 * Return the address of the network printer or NULL on error.
76 *

77 * LOCKING: none.

78 */

79 struct addrinfo *
80 get_printaddr (void)

81 {

82 int err;

83 char *p;

84 struct addrinfo *ailist;

85 if ((p = scan_configfile("printexr")) != NULL) {

86 if ((err = getaddrlist(p, "ipp", &ailist)) != 0) {
87 log_msg("no address information for %s", p);
88 return (NULL) ;

89 }

90 return(ailist);

91 }

92 log msg("no printer address specified");

93 return (NULL) ;

94 '}

[64-73] The get printserver function is simply a wrapper function that calls
P ply PP
scan_configfile to find the name of the computer system where the
printer spooling daemon is running.

[74-94] We use the get printaddr function to get the address of the network
printer. It is similar to the previous function except that when we find the
name of the printer in the configuration file, we use the name to find the
corresponding network address.

Both get_printserver and get_printaddr call scan_configfile. Ifit
can’t open the printer configuration file, scan_configfile calls log_sys to
print an error message and exit. Although get_printserver is meant to be
called from a client command and get printaddr is meant to be called from
the daemon, having both call 1og_sys is OK, because we can arrange for the
log functions to print to the standard error instead of to the log file by setting a
global variable.

Section 21.5

Source Code 767

95 /*

96 * "Timed" read - timout specifies the # of seconds to wait before
97 * giving up (5th argument to select controls how long to wait for
98 * data to be readable). Returns # of bytes read or -1 on error.
99 *

100 * LOCKING: none.

101 */

102 ssize_t

103 tread(int £d, void *buf, size_ t nbytes, unsigned int timout)

104 {

105 int nfds;

106 fd_set readfds;

107 struct timeval tv;

108 tv.tv_sec = timout;

109 tv.tv_usec = 0;

110 FD_ZERO (&readfds) ;

111 FD_SET(fd, &readfds);

112 nfds = select(fd+1, &readfds, NULL, NULL, &tv);

113 if (nfds <= 0) {

114 if (nfds == 0)

115 errno = ETIME;

116 return(-1);

117 }

118 return(read(fd, buf, nbytes));

119 }

[95-107] We provide a function called tread to read a specified number of bytes, but

block for at most timout seconds before giving up. This function is useful
when reading from a socket or a pipe. If we don’t receive data before the
specified time limit, we return —1 with errno set to ETIME. If data is
available within the time limit, we return at most nbytes bytes of data, but we
can return less than requested if all the data doesn’t arrive in time.
We will use tread to prevent denial-of-service attacks on the printer
spooling daemon. A malicious user might repeatedly try to connect to the
daemon without sending it data, just to prevent other users from being able
to submit print jobs. By giving up after a reasonable amount of time, we
prevent this from happening. The tricky part is selecting a suitable timeout
value that is large enough to prevent premature failures when the system is
under load and tasks are taking longer to complete. If we choose a value too
large, however, we might enable denial-of-service attacks by allowing the
daemon to consume too many resources to process the pending requests.

[108-119] We use select to wait for the specified file descriptor to be readable. If the

time limit expires before data is available to be read, select returns 0, so
we set errno to ETIME in this case. If select fails or times out, we return
~1. Otherwise, we return whatever data is available.

768 Communicating with a Network Printer Chapter 21

120 /*

121 * "Timed" read - timout specifies the number of seconds to wait
122 * per read call before giving up, but read exactly nbytes bytes.
123 * Returns number of bytes read or -1 on error.

124 *

125 * LOCKING: none.

126 */

127 ssize_t
128 treadn(int f£d, void *buf, size_t nbytes, unsigned int timout)

129 {

130 size_t nleft;

131 ssize_t nread;

132 nleft = nbytes;

133 while (nleft > 0) {

134 if ((nread = tread(fd, buf, nleft, timout)) < 0) {
135 if (nleft == nbytes)

136 return(-1); /* error, return -1 */

137 else

138 break; /* error, return amount read so far */
139 } else if (nread == 0) {

140 break; /* EOF */

141 }

142 nleft -= nread;

143 buf += nread;

144 }

145 return (nbytes - nleft); /* return >= 0 */

146 }

[120-146] We also provide a variation of tread, called treadn, that reads exactly the
number of bytes requested. This is similar to the readn function described
in Section 14.8, but with the addition of the timeout parameter.

To read exactly nbytes bytes, we have to be prepared to make multiple calls
to read. The difficult part is trying to apply a single timeout value to
multiple calls to read. We don’t want to use an alarm, because signals can
be messy to deal with in multithreaded applications. We can’t rely on the
system updating the timeval structure on return from select to indicate
the amount of time left, because many platforms do not support this
(Section 14.5.1). Thus, we compromise and define the timeout value in this
case to apply to an individual read call. Instead of limiting the total amount
of time we wait, it limits the amount of time we’ll wait in every iteration of
the loop. The maximum time we can wait is bounded by (nbytes x timout)
seconds (worst case, we'll receive only 1 byte at a time).

We use nleft to record the number of bytes remaining to be read. If tread
fails and we have received data in a previous iteration, we break out of the
while loop and return the number of bytes read; otherwise, we return -1.

Section 21.5

Source Code

769

The command used to submit a print job is shown next. The C source file is print.c.

1 /*

2 * The client command for printing documents.
3 * and sends it to the printer spooling daemon.
4 * print [-t] filename

5 */

6 #include "apue.h"

7 #include "print.h"

8 #include <fcntl.h>

9 #include <pwd.h>

10 /*

11 * Needed for logging funtions.

12 */

13 int log_to_stderr = 1;

Opens the file

14 void submit_file(int, int, const char *, size t,

{

Usage:

int) ;

15 int
16 main(int argc, char *argv([])
17 {
18 int fd, sockfd, err, text, c;
19 struct stat sbuf;
20 char *host ;
21 struct addrinfo *ailist, *aip;
22 err = 0;
23 text = 0;
24 while ((c¢ = getopt(argc, argv, "t")) != -1)
25 switch (c) {
26 case 't’:
27 text = 1;
28 break;
29 case '?':
30 err = 1;
31 break;
32 }
33 }
We need to define an integer called 1og_to_stderr to be able to use the log

[1-14]

functions in our library. If set to a nonzero value, error messages will be sent
to the standard error stream instead of to a log file. Although we don’t use any
logging functions in print.c, we do link util.o with print .o to build the
executable print command, and util.c contains functions for both user

commands and daemons.

[15-33] We support one option, -t, to force the file to be printed as text (instead of as a
PostScript program, for example). We use the getopt(3) function to process

the command options.

770

Communicating with a Network Printer Chapter 21

34 if (err || (optind != argc - 1))

35 err _quit ("usage: print [-t] filename");

36 if ((fd = open(argv[optind], O RDONLY)) < 0)

37 err_sys("print: can’t open %s", argv[l]);

38 if (fstat(fd, &sbuf) < 0)

39 err sys("print: can’t stat %s", argv(i]);

40 if (!S_ISREG(sbuf.st_mode))

41 err_quit("print: %s must be a regular file\n", argv[l]);

42 /*

43 * Get the hostname of the host acting as the print server.

44 */

45 if ((host = get_printserver()) == NULL)

46 err_quit ("print: no print server defined");

47 if ((err = getaddrlist (host, "print", &ailist)) != 0)

48 err_quit ("print: getaddrinfo error: %s", gai_strerror(err));

49 for (aip = ailist; aip != NULL; aip = aip->ai next) {

50 if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) < 0) {

51 €rr = errno;

52 } else if (connect_retry(sockfd, aip->ai_addr,

53 aip->ai_addrlen) < 0) ({

54 erxr = errno;

[34-41] When getopt completes processing the command options, it leaves the
variable optind set to the index of the first nonoptional argument. If this is
any value other than the index of the last argument, then the wrong number of
arguments was specified (we support only one nonoptional argument). Our
error processing includes checks to ensure that we can open the file to be
printed and that it is a regular file (as opposed to a directory or other type of
file).

[42-48] We get the name of the printer spooling daemon by calling the

get_printserver function from util.c and then translate the host name
into a network address by calling getaddrlist (also from util.c).
Note that we specify the service as “print.” As part of installing the printer
- spooling daemon on a system, we need to make sure that /etc/services (or
the equivalent database) has an entry for the printer service. When we select a
port number for the daemon, it would be a good idea to select one that is
privileged, to prevent malicious uscrs from writing applications that pretend
to be a printer spooling daemon but instead steal copies of the files we try to
print. This means that the port number should be less than 1,024 (recall
Section 16.3.4) and that our daemon will have to run with superuser privileges
to allow it to bind to a reserved port.

[49-54] We try to connect to the daemon using one address at a time from the list

returned by getaddrinfo. We will try to send the file to the daemon using
the first address to which we can connect.

Section 21.5 Source Code 771

55 } else {

56 submit_file(fd, sockfd, argv([1l], sbuf.st size, text);
57 exit (0);

58 }

59 }

60 errno = €err;

61 err_ret ("print: can’'t contact %s", host);
62 exit (1) ;

63 }

64 /*

65 * Send a file to the printer daemon.

66 * /

67 void

68 submit_file(int f£d, int sockfd, const char *fname, size_t nbytes,
69 int text)

70 {

71 int nr, nw, len;

72 struct passwd *pwd;

73 struct printreq req;

74 struct printresp res;

75 char . buf [IOBUFSZ] ;

76 /*

77 * First build the header.

78 */

79 if ((pwd = getpwuid(geteuid())) == NULL)
80 strcpy (reqg.usernm, "unknown"});

81 else

82 strcpy (req.usernm, pwd->pw_name) ;

83 reqg.size = htonl (nbytes);

84 if (text)

85 req.flags = htonl (PR_TEXT) ;

86 else

87 reqg.flags = 0;

[55-63] If we can make a connection, we call submit_file to transmit the file to the
printer spooling daemon. If we can’t connect to any of the addresses, we print
an error message and exit. We use err_ret and exit instead of making a
single call to err_sys to avoid a compiler warning, because the last line in
main wouldn’t be a return statement or a call to exit.

[64-87] submit_file sends a print request to the daemon and reads the response.
First, we build the printreq request header. We use geteuid to get the
caller’s effective user ID and pass this to getpwuid to look for the user in the
system’s password file. We copy the user’s name to the request header or use
the string unknown if we can’t identify the user. We store the size of the file to
be printed in the header after converting it to network byte order. Then we do
the same with the PR_TEXT flag if the file is to be printed as plaintext.

772 Communicating with a Network Printer Chapter 21

88 if ((len = strlen(fname)) >= JOBNM MAX) {
89 /*
90 * Truncate the filename (+-5 accounts for the leading
91 * four characters and the terminating null).
92 */
93 strcpy (req.jobnm, "... ");
94 strncat (req.jobnm, &fname[len-JOBNM MAX+5], JOBNM_MAX-5) ;
95 } else {
96 strcpy (req.jobnm, fname) ;
97 }
98 /*
99 * Send the header to the server.
100 */
101 nw = writen(sockfd, &req, sizeof (struct printreq));
102 if (nw != sizeof (struct printreq)) ({
103 if (nw < 0)
104 err_sys("can’t write to print server");
105 else
106 err_quit ("short write (%d/%d) to print server",
107 nw, sizeof (struct printreq));
108 }
109 /*
110 * Now send the file.
111 */
112 while ((nr = read(fd, buf, IOBUFSZ)) != 0) {
113 nw = wrlten(sockfd, buf, nr);
114 if (nw != nr) {
115 if (nw < 0)
116 err_sys("can’t write to print server");
117 else
118 err_quit ("short write (%d/%d) to print server",
119 nw, nr);
120 }
121 }

[88-108] We set the job name to the name of the file being printed. If the name is
longer than will fit in the message, we truncate the beginning portion of the
name and prepend an ellipsis to indicate that there were more characters
than would fit in the field. Then we send the request header to the daemon
using writen. If the write fails or if we transmit less than we expect, we
print an error message and exit.

[109-121] After sending the header to the daemon, we send the file to be printed. We
read the file TOBUFSZ bytes at a time and use writen to send the data to the
daemon. As with the header, if the write fails or we write less than we
expect, we print an error message and exit.

Section 21.5 Source Code 773

122 /*

123 * Read the response.

124 */

125 if ((nr = readn(sockfd, &res, sizeof (struct printresp))) !=
126 sizeof (struct printresp))

127 - err_sys("can’'t read response from server") ;
128 if (res.retcode != 0) {

129 printf ("rejected: %s\n", res.msg) ;

130 exit (1) ;

131 } else {

132 printf ("job ID %1d\n", ntohl (res.jobid));
133 }

134 exit (0);

135 }

[122-135] After we send the file to be printed to the daemon, we read the daemon’s
response. If the request failed, the return code (retcode) will be nonzero,
so we print the textual error message included in the response. If the request
succeeded, we print the job ID so that the user knows how to refer to the
request in the future. (Writing a command to cancel the print request is left
as an exercise; the job ID can be used in the cancellation request to identify
the job to be removed from the print queue.)

Note that a successful response from the daemon does not mean that the
printer was able to print the file. It merely means that the daemon
successfully added the print job to the queue.

Most of what we have seen in print.c was discussed in earlier chapters. The only
topic that we haven't covered is the getopt function, although we saw it earlier in the
pty program from Chapter 19.

It is important that all commands on a system follow the same conventions, because
this makes them easier to use. If someone is familiar with the way command-line
options are formed with one command, it would create more chances for mistakes if
another command followed different conventions.

This problem is sometimes visible when dealing with white space on the command
line. Some commands require that an option be separated from its argument by white
space, but other commands require the argument to follow immediate after its option,
without any intervening spaces. Without a consistent set of rules to follow, users either
have to mernorize the syntax of all commands or resort to a trial-and-error process
when invoking them.

The Single UNIX Specification includes a set of conventions and guidelines that
promote consistent command-line syntax. They include such suggestions as “Restrict
each command-line option to a single alphanumeric character” and “All options should
be preceded by a — character.”

Luckily, the getopt function exists to help command developers process
command-line options in a consistent manner.

774

Communicating with a Network Printer Chapter 21

#include <fcntl.h>
int getopt (int argc, const * const argv[], const char *options) ;

extern int optind, opterr, optopt;
extern char *optarg;

Returns: the next option character, or
—1 when all options have been processed

The argc and argv arguments are the same ones passed to the main function of the
program. The options argument is a string containing the option characters supported
by the command. If an option character is followed by a colon, then the option takes an
argument. Otherwise, the option exists by itself. For example, if the usage statement
for a command was

command [-i] [-u username] [-z] filename

we would pass "iu:z" as the options string to getopt.

The normal use of getopt is in a loop that terminates when getopt returns 1.
During each iteration of the loop, getopt will return the next option processed. Itis up
to the application to sort out any conflict in options, however; getopt simply parses
the options and enforces a standard format.

When it encounters an invalid option, getopt returns a question mark instead of
the character. If an option’s argument is missing, getopt will also return a question
mark, but if the first character in the options string is a colon, getopt returns a colon
instead. The special pattern -- will cause getopt to stop processing options and
return —1. This allows users to provide command arguments that start with a minus
sign but aren’t options. For example, if you have a file named -bar, you can’t remove

it by typing
rm -bar
because rm will try to interpret -bar as options. The way to remove the file is to type

rm -- -bar

The getopt function supports four external variables.
optarg If an option takes an argument, getopt sets optarg to point to the
option’s argument string when an option is processed.

opterr If an option error is encountered, getopt will print an error message by
default. To disable this behavior, applications can set opterr to 0.

optind The index in the argv array of the next string to be processed. It starts
out at 1 and is incremented for each argument processed by getopt.

optopt If an error is encountered during options processing, getopt will set
optopt to point to the option string that caused the error.

Section 21.5

Source Code

775

The last file we will look at is the C source file for the printer spooling daemon.

1 /*
2 * Print server daemon.
3 */
4 #include "apue.h"
5 #include "print.h"
6 #include "ipp.h"
7 #include <fcntl.hs>
8 #include <dirent.h>
9 #include <ctype.h>
10 #include <pwd.h>
11 #include <pthread.h>
12 #include <strings.hs>
13 #include <sys/select.h>
14 #include <sys/uio.h>
15 /* .
16 * These are for the HTTP response from the printer.
17 */
18 #define HTTP_INFO (x) ((x) >= 100 && (x) <= 199)
19 #define HTTP_SUCCESS(x) ((x) >= 200 && (x) <= 299)
20 /*
21 * Describes a print job.
22 */
23 struct job {
24 struct job *next; /* next in list */
25 struct job *prev; /* previous in list */
26 long jobid; /* job ID */
27 struct printreq req; /* copy of print request */
28 }i
29 /*
30 * Describes a thread processing a client request.
31 */
32 struct worker_thread {
33 struct worker_thread *next; /* next in list */
34 struct worker_thread ‘*prev; /* previous in list */
35 pthread t tid; /* thread ID */
36 int sockfd; /* socket */
37 }:
[1-19] The printer spooling daemon includes the IPP header file that we saw earlier,

because the daemon needs to communicate with the printer using this
protocol. The HTTP_INFO and HTTP_SUCCESS macros define the status of the
HTTP request (recall that IPP is built on top of HTTP).

[20-37] The job and worker_thread structures are used by the spooling daemon to

keep track of print jobs and threads accepting print requests, respectively.

776

Communicating with a Network Printer ~ Chapter 21

38 /*

39 * Needed for logging.

40 */

41 int log to_stderr = 0;

42 /*

43 * Printer-related stuff.

44 */

45 struct addrinfo *printer;

46 char *printer name;

47 pthread. mutex_t configlock = PTHREAD MUTEX_INITIALIZER;

48 int reread;

49 /*

50 * Thread-related stuff.

51 */

52 struct worker_thread *workers;

53 pthread mutex t workerlock = PTHREAD MUTEX_INITIALIZER;

54 sigset_t mask;

55 /%

56 * Job-related stuff.

57 */

58 struct job *jobhead, *jobtail;

59 int jobfd;

[38-41] Our logging functions require that we define the log_to_stderr variable
and set it to 0 to force log messages to be sent to the system log instead of to
the standard error. In print.c, we defined log_to_stderr and set it to 1,
even though we don’t use the log functions in the user command. We could
have avoided this by splitting the utility functions into two separate files: one
for the server and one for the client commands.

[42-48] We use the global variable printer to hold the network address of the printer.
We store the host name of the printer in printer_name. The configlock
mutex protects access to the reread variable, which is used to indicate that
the daemon needs to reread the configuration file, presumably because an
administrator changed the printer or its network address.

[49-54] Next, we define the thread-related variables. We use workers as the head of a
doubly-linked list of threads that are receiving files from clients. This list is
protected by the mutex workerlock. The signal mask used by the threads is
held in the variable mask.

[55-59] For the list of pending jobs, we define jobhead to be the start of the list and

jobtail to be the tail of the list. This list is also doubly linked, but we need
to add jobs to the end of the list, so we need to remember a pointer to the list
tail. With the list of worker threads, the order doesn’t matter, so we can add
them to the head of the list and don’t need to remember the tail pointer.
jobfd is the file descriptor for the job file.

